2019, Number 4
<< Back Next >>
Revista Cubana de Obstetricia y Ginecología 2019; 45 (4)
A predictive model of preeclampsia from clinical and biochemical data
Cruz VH, López BR, Cáceres DA, Álvarez GED
Language: Spanish
References: 21
Page: 1-13
PDF size: 425.53 Kb.
ABSTRACT
Introduction: Preeclampsia is one of the syndromes in pregnant women that affects at least 3 - 8% of all pregnancies.
Objective: To develop a predictive model of preeclampsia from the redox state in pregnant women, which allows to classify them in groups of preeclamptic pregnant women and healthy pregnant women.
Methods: A cross-sectional analytical study was performed. Biochemical and clinical parameters were evaluated using principal component analysis to identify the most influential variables in the occurrence of preeclampsia. Those selected as the most important variables were evaluated by Fisher's linear discriminant analysis.
Results: The main component analysis determined the variance of the data set, showing the relationship with lipid peroxidation processes, protein metabolism, tissue damage and microangiopathy, considered factors in the pathophysiology of preeclampsia. The most influential variables were used to model a discriminant function capable of classifying healthy and preeclamptic pregnant women. Wilks Lambda value and the high eigenvalue associated with the discriminant function show the discriminant power of the model. The equation obtained was validated with the Leave one out method and revealed excellent classifying power.
Conclusions: The predictive model can be considered as appropriate to classify pre-eclampsia cases, and to show biomarkers as good candidates for classification and as potential predictive indicators of pre-eclampsia.
REFERENCES
Colectivo de autores. La morbilidad materna extremadamente grave, un reto actual para la reducción de la mortalidad materna. Cuba: Ed. Molinos Trade S.A.; 2012.
Álvarez PL, Acosta M, Delgado JJ. Arterial hypertension and pregnancy. En: Sánchez ST. Obstetricia y Ginecología, Vol. 2. Ed. Cuba: Ed. Ciencias Médicas; 2014; p. 321-2.
Rani N, Dhingra R, Singh Arya D, Kalaivani M, Bhatla N, Kumar R. Role of oxidative stress markers and antioxidants in the placenta of preeclamptic patients. J. Obstet. Gynaecol. Res. 2010;36(6):1189–94.
González MJ, Bosco BC, Rodrigo SR, Parra CM. VEGF en capa muscular de vasos placentarios: Expresión en Pre-eclampsia y asociación con Status Antioxidante. Chile: Rev. ANACEM. 2010;4.
Akolekar R, Syngelaki A, Poon L, Wright D, Nicolaides KH. Competing Risks Model in Early Screening for Preeclampsia by Biophysical and Biochemical. Markers Fetal Diagn Ther. 2013;33:8–15.
Merchante LFS, Grandvalet Y, Govaert G. An efficient approach to sparse linear discriminant analysis. ArXiv preprint arXiv. 2012;1206-6472.
Ebrahimzadeh F, Hajizadeh E, Vahabi N, Almasian M, Bakhteyar K. Prediction of unwanted pregnancies using logistic regression, probity regression and discriminant analysis. Med J Islam Repub Iran. 2015;Vol.29:264.
Gunay B, Parlatan U, Seyma S, Gunel T, Benian A, Kalelioglu I. Investigation of Preeclampsia Using Raman Spectroscopy. Hindawi Publishing Corporation Spectroscopy: An International Journal. 2012;27:239–52.
Atamer Y, Kocyigit Y, Yokus B, et al. Lipid peroxidation, antioxidante defense, status of tracemetals and leptin levels in preeclampsia. Eur J Obstet Gynecol Reprod Biol. 2005;119:60-6.
Ecobichon DJ. Glutathione depletion and resynthesys in laboratory animals. Drug Chem Toxicol. 1984;7(4):345-65.
Lujan L, Gil L, Martínez G, Giuliani A, González I, Tarinas A, et al. Effects of increase micronutrients intake on oxidative stress indicators in HIV/AIDS patients. Int J Vit Nut Res. 2005;75(1):19-27.
Esterbauer H, Cheeseman KH. Determination of aldehyd lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Meth Enzymol. 1990;186:407-21.
Brereton RG. Applied Chemometrics for Scientists. John Wiley & Sons, Chichester UK; 2007.
Zhi-Hua M, Jian-Hua Y, Xue-Xi Z, Xiao W, Yang X. Discrimination of healthyand osteoarthritic articular cartilage by Fourier transform infrared imaging and Fisher’s discriminant analysis. Biomedical Optics Express. 2016;7(2):59-67.
Atiba A, Abbiyesuku F, Oparinde DP, Niran-Atiba T, Akindele RA. Plasma Malondialdehyde (MDA): An Indication of Liver Damage in Women with Pre-eclampsia. Ethiop J Health Sci. 2016;26(5).
Kaur G, Mishra S, Sehgal A, Prasad R. Alterations in lipid peroxidation and antioxidant statusin pregnancy with preeclampsia. Mol Cell Biochem. 2008;313:37–44.
Cruz H, León M, Caceres A, López R, Álvarez E. Análisis Multivariado a partir del estado redox asociado a la Pre-eclampsia. Revista Cubana de Obstetricia y Ginecología. 2017;43(3).
Malihe N, Soghrat F, Hamid A, Farid Z, Noorosadat K, Nastaran S. Longitudinal Discriminant Analysis of Hemoglobin Level for Predicting Pre-eclampsia. Iran Red Crescent Med J. 2015 March;17(3):e19489.
Braun KP, Gant NF, Olson CM, Parisi V, Forrest KA, Peterson CM. A discriminant function for preeclampsia: case-control study of minor hemoglobins, red cell enzymes, and clinical laboratory values. Am J Perinatol. 1997;14(5):297-302.
Baschat AA, Magder LS, Doyle LE, et al. Prediction of preeclampsia utilizing the first trimester screening examination. Am J Obstet Gynecol. 2014;211:514:e1-7.
Carrillo ER, Sánchez ZM. Bases moleculares de la pre-eclampsia- eclampsia. Rev Invest Med Sur Mex. 2013;20(2):103-9.