2020, Number 1
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2020; 23 (1)
Determination of the total antioxidant capacity of food and human plasma by photochemiluminescence: Correlation with spectrophotometric (FRAP) and fluorometric (ORAC) assays
Benítez-Estrada A, Villanueva-Sánchez J, González-Rosendo G, Alcántar-Rodríguez VE, Puga-Díaz R, Quintero-Gutiérrez AG
Language: Spanish
References: 47
Page: 1-9
PDF size: 495.86 Kb.
ABSTRACT
The determination of antioxidant capacity is useful to value the quality of a food, the sum of antioxidants in a system, or the
bioavailability of antioxidant compounds in the human body. The available methods determine the potential effect of antioxidant
substances, present in food and in the human body, against oxidation reactions. The objective was to compare the total antioxidant
capacity (TAC) of food samples and human plasma, by photochemiluminescence (PCL) in contrast to methods that quantify the
oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP). Water-soluble and lipid-soluble extracts
were obtained from stabilized rice bran (SRB) and Ulva clathrata flour (UCF). Plasma was obtained from blood human samples
(HUP). Three samples were processed in each case. The results were analyzed with one-way analysis of variance and Pearson's
correlation,
p ‹0.05. The results of TAC measurement were PCL, SRB 246.37 ± 5.37; UCF 21.05 ± 0.41 and HUP 90.59 ± 1.17
Trolox equivalents (TE) µmol /100 g or 100 mL,
p‹0.05. With ORAC were: SRB 5015.62 ± 12.83; UCF 852.37 ± 3.45 and HUP
2563.31 ± 39.47 TE µmol /100 g or 100 mL,
p‹0.05. FRAP: SRB 519.37 ± 0.04; UCF 52.78 ± 0.01 and HUP 90.26 ± 0.01 Fe 2+
equivalents (Fe
2+E) µmol /100 g or 100 mL. Correlations were observed between PCL-ORAC r=0.99; and PCL-FRAP r=0.94,
both statistically significant (
p ‹ 0.05). PCL showed to be a reliable and alternative method to quantify TAC, which can be applied
in food and health intervention studies.
REFERENCES
Aguilar, C., Gavino, G., Baragaño, M., Hevia, P. & Gavino, V. (2007). Correlation of tocopherol, tocotrienol, γ-oryzanol and total polyphenol content in rice bran with different antioxidant capacity assays. Food Chemistry, 102, 1228- 1232. DOI: 10.1016/j.foodchem.2006.07.012.
Aguilera, M., Casas, M., Carrillo, S., González, B. & Pérez, F. (2005). Chemical composition and microbiological assays of marine algae Enteromorpha sp. as a potential food source. Journal of Food Composition and Analysis, 18, 79-88. DOI: 10.1016/j.jfca.2003.12.012.
Amorim, K., Lage, M. A. & López, J. (2012). Changes in bioactive compounds content and antioxidant activity of seaweed after cooking processing. CyTA- Journal of Food, 10(4), 321-324. DOI: 10.1080/19476337.2012.658871.
Apak, R.̧ Özyürek, M., Güclu̧ , K. & Çapanoglŭ, E. (2016). Antioxidant activity/capacity measurement. I. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. Journal of Agricultural and Food Chemistry, 64, 997−1027. DOI: 10.1021/acs.jafc.5b04739.
Apak, R., Gorinstein, S., Böhm, V., Schaich, K., Özyürek, M. & Güçlü, K. (2013). Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report). Pure and Applied Chemistry, 85, 957-998. DOI: 10.1351/PAC-REP-12-07-15.
Apak, R., Özyürek, M., Güçlü, K. & Capanoglu, E. (2016). Antioxidant activity/capacity measurement: II. Hydrogen atom transfer (HAT)-based, mixed mode (electron transfer (ET)/HAT) and lipid peroxidation assays. Journal of Agricultural and Food Chemistry. 64. DOI: 10.1021/acs. jafc.5b04743.
Bauerfeind, J., Hintze, V., Kschonsek, J., Killenberg, M. & Böhm, V. (2014). Use of photochemiluminescence for the determination of antioxidant activities of carotenoids and antioxidant capacities of selected tomato products. Journal of Agriculture and Food Chemistry, 62(30):7452-9. DOI: 10.1021/jf502019r.
Benzie, I. F. & Choi, S. W. (2014). Antioxidants in food: content, measurement, significance, action, cautions, caveats, and research needs. Advanced Food and Nutrition Research, 71, 1-53. DOI: 10.1016/B978-0- 12-800270-4.00001-8.
Benzie, I. F. & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239, 70-76. DOI: 10.1006/abio.1996.0292.
Benzie, I. F. & Devaki, M. The ferric reducing/antioxidant power (FRAP) assay for non-enzymatic antioxidant capacity: Concepts, procedures, limitations and applications. In Measurement of Antioxidant Activity & Capacity, 1st ed.; Apak, R., Capanoglu, E., Shahidi, F., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; Chapter 5; ISBN 9781119135388.
Bogdan-Stefan, N., Ticuta, N., Marioara, M., Monica, V. & Emin, C. (2018). Antioxidant capacity of some marine green macroalgae species fluid extracts. Sofia: Surveying Geology & Mining Ecology Management (SGEM), 18(6.4), 63-70. DOI: 10.5593/sgem2018V/6.4/S08.009.
Dorta, E., Fuentes, E., Aspée, A., Atala, E., Speisky, H., Bridi, R., Lissi, E. & López, C. (2015). The ORAC (oxygen radical absorbance capacity) index does not reflect the capacity of antioxidants to trap peroxyl radicals. Royal Society of Chemistry-Advances, 5, 39899-39902. DOI: 10.1039/C5RA01645B.
Elizondo-Reyna, E., Medina-González, R., Nieto-López, M. G., Ortiz-López, R., Elizondo-González, R., Powell, M. S., Ricque-Marie, D. & Cruz-Suárez, L. E. (2016). Consumption of Ulva clathrata as a dietary supplement stimulates immune and lipid metabolism genes in pacific white shrimp Litopenaeus vannamei. Journal of Applied Phycology, 28(6), 3667-3677. DOI: 10.1007/s10811-016- 0889-1.
Farasat, M., Khavari, R. A., Nabavi, S. M. & Namjooyan, F. (2014). Antioxidant activity, total phenolics and flavonoid contents of some edible green seaweeds from northern coasts of the Persian Gulf. Iranian Journal of Pharmaceutical Research, 13, 163-170. PMID: 24734068.
Forster, G. M., Raina, K., Kumar, A., Kumar, S., Agarwal, R., Chen, M. H., Bauer, J. E., McClung, A. M. & Ryan, E. P. (2013). Rice varietal differences in bioactive bran components for inhibition of colorectal cancer cell growth. Food Chemistry, 141, 1545-1552. DOI: 10.1016/j. foodchem.2013.04.020.
Galanakis, C. M. (2017). Nutraceutical and functional food components. Effects of innovative processing techniques. In C.M. Galanakis Ed. Chapter I. Introduction, 1-14. Cambridge: Academic Press. ISBN: 9780128096505.
Ghiselli, A., Serafini, M., Natella, F. & Scaccini, C. (2000). Total antioxidant capacity as a tool to assess redox status: Critical view and experimental data. Free Radical Biology and Medicine, 29, 1106-1114. DOI: 10.1016/s0891- 5849(00)00394-4.
Goufo, P., Ferreira, L., Trindade, H. & Rosa, E. (2015). Distribution of antioxidant compounds in the grain of the Mediterranean rice variety ‘Ariete’. CyTA - Journal of Food, 13(1), 140-150. DOI: 10.1080/19476337.2014.923941.
Gramza-Michałowska, A., Sidor, A., Reguła, J. & Kulczyński, B. (2015). PCL assay application in superoxide anion-radical scavenging capacity of tea Camellia sinensis extracts. Acta Scientiarum Polonorum Technologia Alimentaria, 14, 331- 341. DOI: 10.17306/J.AFS.2015.4.33.
Gul, K., Yousuf, B., Singh, A. K., Singh, P. & Wani, A. A. (2015). Rice bran: nutritional values and its merging potential for development of functional food: a review. Bioactive Carbohydrates and Dietary Fibre, 6(1), 24–30. DOI: 10.1016/j.bcdf.2015.06.002.
Huang, D. (2018). Dietary Antioxidants and Health Promotion. Antioxidants (Basel, Switzerland), 7(1), 9. DOI: 10.3390/ antiox7010009.
Karmowski, J., Hintze, V., Kschonsek, J., Killenberg, M. & Böhm, V. (2015). Antioxidant activities of tocopherols/ tocotrienols and lipophilic antioxidant capacity of wheat, vegetable oils, milk and milk cream by using photochemiluminescence. Food Chemistry, 175, 593–600. DOI: 10.1016/j.foodchem.2014.12.010.
Kasote, D. M., Katyare, S. S., Hegde, M. V. & Bae, H. (2015). Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences, 11(8), 982–991. DOI:10.7150/ ijbs.12096.
Lai, C. H., Liou, S. H., Jaakkola, J. K., Huang, H. B., Su, T.Y. & Strickland, P. T. (2012). Exposure to polycyclic aromatic hydrocarbons associated with traffic exhaust: The increase of lipid peroxidation and reduction of antioxidant capacity. Aerosol and Air Quality Research, 12, 941-950. DOI: 10.4209/aaqr.2012.01.0021.
López-Alarcón, C. & Denicolab, A. (2013). Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Analytica Chimica Acta., 763, 1 -10. DOI: 10.1016/j.aca.2012.11.051.
Meenakshi, S., Umayaparvathi, S., Arumugam, M. & Balasubramanian, T. (2011). In vitro antioxidant properties and FTIR analysis of two seaweeds of Gulf of Mannar. Asian Pacific Journal of Tropical Biomedicine, 1 (S1), 66-70. DOI: 10.1016/S2221-1691(11)60126-3.
Mercado, G., de la Rosa, L., Wall-Medrano, A., López, J. A. & Álvarez-Parrilla, E. (2013). Compuestos polifenólicos y capacidad antioxidante de especias típicas consumidas en México. Nutrición Hospitalaria, 28, 36-46. DOI: 10.3305/ nh.2013.28.1.6298.
Moharram, H. A. & Youssef, M. M. (2014). Methods for determining the antioxidant activity: A review. Alexandria Journal of Food Science and Technology, 11(1), 31-42. DOI: 10.12816/0025348.
Niki, E. (2010). Assessment of antioxidant capacity in vitro and in vivo. Free Radical Biology and Medicine, 9: 503-515. DOI: 10.1016/j.freeradbiomed.2010.04.016.
Omata, Y., Yoshida, Y. & Niki, E. (2010). Assessment of the antioxidant capacity of natural fruit extracts by inhibition of probe decay and plasma lipid peroxidation. Bioscience, Biotechnology, and Biochemistry, 74, 531-535. DOI: 10.1271/bbb.90717.
Peña, A., Mawhinney, T. P., Ricque, D. & Cruz, L. E. (2011). Chemical composition of cultivated seaweed Ulva clathrata (Roth) C. Agardh. Food Chemistry, 129, 491-498. DOI: 10.1016/j.foodchem.2011.04.104.
Phaniendra, A., Jestadi, D. B. & Periyasamy, L. (2015). Free radicals: Properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry: IJCB, 30(1), 11–26. DOI: 10.1007/s12291-014-0446-0.
Pisoschi, A. M. & Negulescu, G. P. (2011). Methods for total antioxidant activity determination: A review. Biochemical and Analytical Biochemistry, 1, 106. DOI: 10.4172/2161- 1009.1000106.
Popov, I. & Lewin G. (2005). Photochemiluminescent detection of antiradical activity.VII. Comparison with a modified method of thermo-initiated free radical generation with chemiluminescent detection. Luminescence, 20(4-5), 321- 325. DOI: 10.1002/bio.856.
Prior, R. L., Wu, X. & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290-4302. Review. DOI: 10.1021/jf0502698.
Prior, R. L., Hoang, H., Gu, L., Wu, X., Bacchiocca, M., Howard, L., Hampsch-Woodill, M., Huang, D., Ou, B. & Jacob, R. (2003). Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity, ORAC) of plasma and other biological and food samples. Journal of Agricultural and Food Chemistry, 51, 3273-3279. DOI: 10.1021/jf0262256.
Rácz, A., Papp, N., Balogh, E., Fodor, M. & Heberger, K. (2015). Comparison of antioxidant capacity assays with chemometric methods. Analytical Methods, 7, 4216-4224. DOI: 10.1039/C5AY00330J.
Rodríguez-Bonilla, P., Gandía-Herrero, F., Matencio, A., García-Carmona, F. & López-Nicolás, J. M. (2017). Comparative study of the antioxidant capacity of four stilbenes using ORAC, ABTS+, and FRAP techniques. Food Analytical Methods, 10, 2994-3000. DOI:10.1007/ s12161-017-0871-9.
Shahidi, F. & Zhong, Y. (2015). Measurement of antioxidant activity, Journal of Functional Foods, 18(B), 757-781. DOI: 10.1016/j.jff.2015.01.047.
Shanmugam, T., Selvaraj, M. & Poomalai, S. (2016). Epigallocatechin gallate potentially abrogates fluoride induced lung oxidative stress, inflammation via Nrf2/Keap1 signaling pathway in rats: An in-vivo and in-silico study. International Immunopharmacology, 39, 128-139. DOI: 10.1016/j.intimp.2016.07.022.
Sharif, M. K., Butt, M. S., Anjum, F. M. & Khan, S. H. (2014). Rice Bran: A novel functional ingredient, Critical Reviews in Food Science and Nutrition, 54(6), 807-816. DOI: 10.1080/10408398.2011.608586.
Singh, R. P., Kumari, P. & Reddy, C. R. (2015). Antimicrobial compounds from seaweeds-associated bacteria and fungi. Review. Applied Microbiology and Biotechnology, 99, 1571-1586. DOI: 10.1007/s00253-014-6334-y.
Sohail, M., Rakha, A., Sadiq, M., Jawad, M. & Rashid, S. (2017) Rice bran nutraceutics: A comprehensive review. Critical Reviews in Food Science and Nutrition, 57(17), 3771-3780. DOI: 10.1080/10408398.2016.1164120.
Sun, M., & Johnson, M. A. (2015). Measurement of total antioxidant capacity in sub-μL blood samples using craft paper-based analytical devices. Royal Society of Chemistry - Advances, 5(69), 55633–55639. DOI: 10.1039/ C5RA06479A.
Wesolowska, M. & Dżugan, M. (2017). The use of the PHOTOCHEM device in evaluation of antioxidant activity of polish honey. Food Analytical Methods, 10, 1568. DOI: 10.1007/s12161-016-0715-z.
Zapata, S., Piedrahita, A. M. & Rojano, B. (2014). Capacidad atrapadora de radicales de oxígeno (ORAC) y fenoles totales de frutas y hortalizas de Colombia. Perspectivas en Nutrición Humana, 16, 25-36. DOI: 10.17533/udea.penh.
Zielińska, M., Olejnik, A., Dobrowolska, A. & Grajek, W. (2007). Effects of Aronia melanocarpa polyphenols on oxidative metabolism and apoptosis of neutrophils from obese and non-obese individuals. Acta Scientiarum Polonorum Technologia Alimentaria, 6 (3), 75-86.