2020, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2020; 23 (1)
Determinación de la capacidad antioxidante total de alimentos y plasma humano por fotoquimioluminiscencia: Correlación con ensayos fluorométricos (ORAC) y espectrofotométricos (FRAP)
Benítez-Estrada A, Villanueva-Sánchez J, González-Rosendo G, Alcántar-Rodríguez VE, Puga-Díaz R, Quintero-Gutiérrez AG
Idioma: Español
Referencias bibliográficas: 47
Paginas: 1-9
Archivo PDF: 495.86 Kb.
RESUMEN
La determinación de la capacidad antioxidante es útil para valorar la calidad de un alimento, la cantidad de antioxidantes presentes
en un sistema, o la biodisponibilidad de compuestos antioxidantes en el cuerpo humano. Los métodos disponibles realizan la
determinación del efecto potencial de las sustancias antioxidantes, presentes en los alimentos y en el organismo humano, contra
las reacciones de oxidación. El objetivo fue comparar los resultados de la detección de la capacidad antioxidante total (CAT) en
muestras de alimentos y plasma humano, mediante la quimioluminiscencia por fotosensibilización (PCL), en contraste con métodos
que cuantifican la capacidad de absorbancia del radical de oxígeno (ORAC) y el poder antioxidante reductor del hierro (FRAP).
Se obtuvieron extractos hidrosolubles y liposolubles de salvado de arroz estabilizado (SAE) y de harina de Ulva clathrata (HUC).
El plasma se obtuvo de muestras de sangre humana (PHU). Se procesaron tres muestras en cada caso. Los resultados se analizaron
mediante análisis de varianza de una vía y correlación de Pearson,
p ‹ 0.05. La CAT determinada mediante PCL fue: SAE 246.37
± 5.37, HUC 21.05 ± 0.41 y PHU 90.59 ± 1.17 equivalentes Trolox (ET) µmol /100 g ó 100 mL,
p ‹ 0.05; ORAC: SAE 5015.62
± 12.83, HUC 852.37 ± 3.45 y PHU 2563.31 ± 39.47 ET µmol /100 g ó 100 mL,
p ‹ 0.05. FRAP: SAE 519.37 ± 0.04, HUC 52.78
± 0.01 y PHU 90.26 ± 0.01 equivalentes Fe2+ (EFe
2+) µmol /100 g ó 100 mL. Se observaron correlaciones entre PCL y ORAC,
r = 0.99; y la PCL y FRAP, r = 0.94, ambas estadísticamente significativas (
p ‹ 0.05). La PCL mostró ser un método confiable y
alternativo para cuantificar la CAT, que se puede aplicar en estudios de alimentos y de intervenciones en salud.
REFERENCIAS (EN ESTE ARTÍCULO)
Aguilar, C., Gavino, G., Baragaño, M., Hevia, P. & Gavino, V. (2007). Correlation of tocopherol, tocotrienol, γ-oryzanol and total polyphenol content in rice bran with different antioxidant capacity assays. Food Chemistry, 102, 1228- 1232. DOI: 10.1016/j.foodchem.2006.07.012.
Aguilera, M., Casas, M., Carrillo, S., González, B. & Pérez, F. (2005). Chemical composition and microbiological assays of marine algae Enteromorpha sp. as a potential food source. Journal of Food Composition and Analysis, 18, 79-88. DOI: 10.1016/j.jfca.2003.12.012.
Amorim, K., Lage, M. A. & López, J. (2012). Changes in bioactive compounds content and antioxidant activity of seaweed after cooking processing. CyTA- Journal of Food, 10(4), 321-324. DOI: 10.1080/19476337.2012.658871.
Apak, R.̧ Özyürek, M., Güclu̧ , K. & Çapanoglŭ, E. (2016). Antioxidant activity/capacity measurement. I. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. Journal of Agricultural and Food Chemistry, 64, 997−1027. DOI: 10.1021/acs.jafc.5b04739.
Apak, R., Gorinstein, S., Böhm, V., Schaich, K., Özyürek, M. & Güçlü, K. (2013). Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report). Pure and Applied Chemistry, 85, 957-998. DOI: 10.1351/PAC-REP-12-07-15.
Apak, R., Özyürek, M., Güçlü, K. & Capanoglu, E. (2016). Antioxidant activity/capacity measurement: II. Hydrogen atom transfer (HAT)-based, mixed mode (electron transfer (ET)/HAT) and lipid peroxidation assays. Journal of Agricultural and Food Chemistry. 64. DOI: 10.1021/acs. jafc.5b04743.
Bauerfeind, J., Hintze, V., Kschonsek, J., Killenberg, M. & Böhm, V. (2014). Use of photochemiluminescence for the determination of antioxidant activities of carotenoids and antioxidant capacities of selected tomato products. Journal of Agriculture and Food Chemistry, 62(30):7452-9. DOI: 10.1021/jf502019r.
Benzie, I. F. & Choi, S. W. (2014). Antioxidants in food: content, measurement, significance, action, cautions, caveats, and research needs. Advanced Food and Nutrition Research, 71, 1-53. DOI: 10.1016/B978-0- 12-800270-4.00001-8.
Benzie, I. F. & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239, 70-76. DOI: 10.1006/abio.1996.0292.
Benzie, I. F. & Devaki, M. The ferric reducing/antioxidant power (FRAP) assay for non-enzymatic antioxidant capacity: Concepts, procedures, limitations and applications. In Measurement of Antioxidant Activity & Capacity, 1st ed.; Apak, R., Capanoglu, E., Shahidi, F., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; Chapter 5; ISBN 9781119135388.
Bogdan-Stefan, N., Ticuta, N., Marioara, M., Monica, V. & Emin, C. (2018). Antioxidant capacity of some marine green macroalgae species fluid extracts. Sofia: Surveying Geology & Mining Ecology Management (SGEM), 18(6.4), 63-70. DOI: 10.5593/sgem2018V/6.4/S08.009.
Dorta, E., Fuentes, E., Aspée, A., Atala, E., Speisky, H., Bridi, R., Lissi, E. & López, C. (2015). The ORAC (oxygen radical absorbance capacity) index does not reflect the capacity of antioxidants to trap peroxyl radicals. Royal Society of Chemistry-Advances, 5, 39899-39902. DOI: 10.1039/C5RA01645B.
Elizondo-Reyna, E., Medina-González, R., Nieto-López, M. G., Ortiz-López, R., Elizondo-González, R., Powell, M. S., Ricque-Marie, D. & Cruz-Suárez, L. E. (2016). Consumption of Ulva clathrata as a dietary supplement stimulates immune and lipid metabolism genes in pacific white shrimp Litopenaeus vannamei. Journal of Applied Phycology, 28(6), 3667-3677. DOI: 10.1007/s10811-016- 0889-1.
Farasat, M., Khavari, R. A., Nabavi, S. M. & Namjooyan, F. (2014). Antioxidant activity, total phenolics and flavonoid contents of some edible green seaweeds from northern coasts of the Persian Gulf. Iranian Journal of Pharmaceutical Research, 13, 163-170. PMID: 24734068.
Forster, G. M., Raina, K., Kumar, A., Kumar, S., Agarwal, R., Chen, M. H., Bauer, J. E., McClung, A. M. & Ryan, E. P. (2013). Rice varietal differences in bioactive bran components for inhibition of colorectal cancer cell growth. Food Chemistry, 141, 1545-1552. DOI: 10.1016/j. foodchem.2013.04.020.
Galanakis, C. M. (2017). Nutraceutical and functional food components. Effects of innovative processing techniques. In C.M. Galanakis Ed. Chapter I. Introduction, 1-14. Cambridge: Academic Press. ISBN: 9780128096505.
Ghiselli, A., Serafini, M., Natella, F. & Scaccini, C. (2000). Total antioxidant capacity as a tool to assess redox status: Critical view and experimental data. Free Radical Biology and Medicine, 29, 1106-1114. DOI: 10.1016/s0891- 5849(00)00394-4.
Goufo, P., Ferreira, L., Trindade, H. & Rosa, E. (2015). Distribution of antioxidant compounds in the grain of the Mediterranean rice variety ‘Ariete’. CyTA - Journal of Food, 13(1), 140-150. DOI: 10.1080/19476337.2014.923941.
Gramza-Michałowska, A., Sidor, A., Reguła, J. & Kulczyński, B. (2015). PCL assay application in superoxide anion-radical scavenging capacity of tea Camellia sinensis extracts. Acta Scientiarum Polonorum Technologia Alimentaria, 14, 331- 341. DOI: 10.17306/J.AFS.2015.4.33.
Gul, K., Yousuf, B., Singh, A. K., Singh, P. & Wani, A. A. (2015). Rice bran: nutritional values and its merging potential for development of functional food: a review. Bioactive Carbohydrates and Dietary Fibre, 6(1), 24–30. DOI: 10.1016/j.bcdf.2015.06.002.
Huang, D. (2018). Dietary Antioxidants and Health Promotion. Antioxidants (Basel, Switzerland), 7(1), 9. DOI: 10.3390/ antiox7010009.
Karmowski, J., Hintze, V., Kschonsek, J., Killenberg, M. & Böhm, V. (2015). Antioxidant activities of tocopherols/ tocotrienols and lipophilic antioxidant capacity of wheat, vegetable oils, milk and milk cream by using photochemiluminescence. Food Chemistry, 175, 593–600. DOI: 10.1016/j.foodchem.2014.12.010.
Kasote, D. M., Katyare, S. S., Hegde, M. V. & Bae, H. (2015). Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences, 11(8), 982–991. DOI:10.7150/ ijbs.12096.
Lai, C. H., Liou, S. H., Jaakkola, J. K., Huang, H. B., Su, T.Y. & Strickland, P. T. (2012). Exposure to polycyclic aromatic hydrocarbons associated with traffic exhaust: The increase of lipid peroxidation and reduction of antioxidant capacity. Aerosol and Air Quality Research, 12, 941-950. DOI: 10.4209/aaqr.2012.01.0021.
López-Alarcón, C. & Denicolab, A. (2013). Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Analytica Chimica Acta., 763, 1 -10. DOI: 10.1016/j.aca.2012.11.051.
Meenakshi, S., Umayaparvathi, S., Arumugam, M. & Balasubramanian, T. (2011). In vitro antioxidant properties and FTIR analysis of two seaweeds of Gulf of Mannar. Asian Pacific Journal of Tropical Biomedicine, 1 (S1), 66-70. DOI: 10.1016/S2221-1691(11)60126-3.
Mercado, G., de la Rosa, L., Wall-Medrano, A., López, J. A. & Álvarez-Parrilla, E. (2013). Compuestos polifenólicos y capacidad antioxidante de especias típicas consumidas en México. Nutrición Hospitalaria, 28, 36-46. DOI: 10.3305/ nh.2013.28.1.6298.
Moharram, H. A. & Youssef, M. M. (2014). Methods for determining the antioxidant activity: A review. Alexandria Journal of Food Science and Technology, 11(1), 31-42. DOI: 10.12816/0025348.
Niki, E. (2010). Assessment of antioxidant capacity in vitro and in vivo. Free Radical Biology and Medicine, 9: 503-515. DOI: 10.1016/j.freeradbiomed.2010.04.016.
Omata, Y., Yoshida, Y. & Niki, E. (2010). Assessment of the antioxidant capacity of natural fruit extracts by inhibition of probe decay and plasma lipid peroxidation. Bioscience, Biotechnology, and Biochemistry, 74, 531-535. DOI: 10.1271/bbb.90717.
Peña, A., Mawhinney, T. P., Ricque, D. & Cruz, L. E. (2011). Chemical composition of cultivated seaweed Ulva clathrata (Roth) C. Agardh. Food Chemistry, 129, 491-498. DOI: 10.1016/j.foodchem.2011.04.104.
Phaniendra, A., Jestadi, D. B. & Periyasamy, L. (2015). Free radicals: Properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry: IJCB, 30(1), 11–26. DOI: 10.1007/s12291-014-0446-0.
Pisoschi, A. M. & Negulescu, G. P. (2011). Methods for total antioxidant activity determination: A review. Biochemical and Analytical Biochemistry, 1, 106. DOI: 10.4172/2161- 1009.1000106.
Popov, I. & Lewin G. (2005). Photochemiluminescent detection of antiradical activity.VII. Comparison with a modified method of thermo-initiated free radical generation with chemiluminescent detection. Luminescence, 20(4-5), 321- 325. DOI: 10.1002/bio.856.
Prior, R. L., Wu, X. & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290-4302. Review. DOI: 10.1021/jf0502698.
Prior, R. L., Hoang, H., Gu, L., Wu, X., Bacchiocca, M., Howard, L., Hampsch-Woodill, M., Huang, D., Ou, B. & Jacob, R. (2003). Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity, ORAC) of plasma and other biological and food samples. Journal of Agricultural and Food Chemistry, 51, 3273-3279. DOI: 10.1021/jf0262256.
Rácz, A., Papp, N., Balogh, E., Fodor, M. & Heberger, K. (2015). Comparison of antioxidant capacity assays with chemometric methods. Analytical Methods, 7, 4216-4224. DOI: 10.1039/C5AY00330J.
Rodríguez-Bonilla, P., Gandía-Herrero, F., Matencio, A., García-Carmona, F. & López-Nicolás, J. M. (2017). Comparative study of the antioxidant capacity of four stilbenes using ORAC, ABTS+, and FRAP techniques. Food Analytical Methods, 10, 2994-3000. DOI:10.1007/ s12161-017-0871-9.
Shahidi, F. & Zhong, Y. (2015). Measurement of antioxidant activity, Journal of Functional Foods, 18(B), 757-781. DOI: 10.1016/j.jff.2015.01.047.
Shanmugam, T., Selvaraj, M. & Poomalai, S. (2016). Epigallocatechin gallate potentially abrogates fluoride induced lung oxidative stress, inflammation via Nrf2/Keap1 signaling pathway in rats: An in-vivo and in-silico study. International Immunopharmacology, 39, 128-139. DOI: 10.1016/j.intimp.2016.07.022.
Sharif, M. K., Butt, M. S., Anjum, F. M. & Khan, S. H. (2014). Rice Bran: A novel functional ingredient, Critical Reviews in Food Science and Nutrition, 54(6), 807-816. DOI: 10.1080/10408398.2011.608586.
Singh, R. P., Kumari, P. & Reddy, C. R. (2015). Antimicrobial compounds from seaweeds-associated bacteria and fungi. Review. Applied Microbiology and Biotechnology, 99, 1571-1586. DOI: 10.1007/s00253-014-6334-y.
Sohail, M., Rakha, A., Sadiq, M., Jawad, M. & Rashid, S. (2017) Rice bran nutraceutics: A comprehensive review. Critical Reviews in Food Science and Nutrition, 57(17), 3771-3780. DOI: 10.1080/10408398.2016.1164120.
Sun, M., & Johnson, M. A. (2015). Measurement of total antioxidant capacity in sub-μL blood samples using craft paper-based analytical devices. Royal Society of Chemistry - Advances, 5(69), 55633–55639. DOI: 10.1039/ C5RA06479A.
Wesolowska, M. & Dżugan, M. (2017). The use of the PHOTOCHEM device in evaluation of antioxidant activity of polish honey. Food Analytical Methods, 10, 1568. DOI: 10.1007/s12161-016-0715-z.
Zapata, S., Piedrahita, A. M. & Rojano, B. (2014). Capacidad atrapadora de radicales de oxígeno (ORAC) y fenoles totales de frutas y hortalizas de Colombia. Perspectivas en Nutrición Humana, 16, 25-36. DOI: 10.17533/udea.penh.
Zielińska, M., Olejnik, A., Dobrowolska, A. & Grajek, W. (2007). Effects of Aronia melanocarpa polyphenols on oxidative metabolism and apoptosis of neutrophils from obese and non-obese individuals. Acta Scientiarum Polonorum Technologia Alimentaria, 6 (3), 75-86.