2020, Number 2
A Proposal of an Android Application Prototype for Nursing Diagnoses Using Artificial Neural Networks
Language: Portugués
References: 25
Page: 1-15
PDF size: 387.39 Kb.
ABSTRACT
Introduction: Systematization of nursing care must be implemented, especially in the case that there is a more advanced level of patient care, such as in intensive care units, which are recognized places where great experience and technologies are concentrated.Objective: To propose a model of a decision support system using artificial neural networks for the elaboration of nursing diagnoses through an Android application.
Methods: This study is characterized by being a type of methodological and technological prototype in which the vital signs of patients admitted to an intensive care unit will be analyzed. The data will be obtained from the database of Smart Monitoring of Intensive Care Parameters, which contains physiological signals and vital sign series captured from patient monitors, and which are obtained from hospital medical information systems of thousands of patients in intensive care units.
Results: The application, in its final phase of implementation, is designed with active screens worked together by a body of nursing professionals who gave their opinion on the desired benefits and first impressions.
Conclusions: At this time, tests are being carried out to train the artificial neural network, and an application is expected to be used for promoting nursing diagnoses based on the patient’s vital signs, general health evaluations, and information on the patient's electronic medical history, together with the clinical and critical judgment of the professional nurse.
REFERENCES
Remizoski J, Rocha MM, Vall J. Dificuldades na implantação da sistematização da assistência de enfermagem-SAE: uma revisão teórica. Cadernos da Escola de Saúde. Curitiba. 2017 [acceso: 21/06/2019];1(3):1-14. Disponible en: http://portaldeperiodicos.unibrasil.com.br/index.php/cadernossaude/article/viewFile/2298/1871
Lo CK, Chang SS, Chuang CH, Chen HC. A Mobile Nursing App Applying to the Wound Care and Drug Administration of Patients. In 2015 9th International Conference on Mobile and Internet Services in Ubiquitous Computing. IEEE. 2015 [acceso: 21/05/2019]. Disponible en: https://doi.org/10.1109/IMIS.2015.61
Schwonke CR, Lunardi Filho WD, Lunardi VL, Santos SS, Barlem EL. Perspectivas filosóficas do uso da tecnologia no cuidado de enfermagem em terapia intensiva. Rev Bras Enferm, Brasília. 2011 [acceso: 15/07/2019];64(1):189-92. Disponible en: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0034-71672011000100028
Hum RS, Cato K, Sheehan B, Patel S, Duchon J, De la Mora P, et al. Developing clinical decision support within a commercial electronic health record system to improve antimicrobial prescribing in the neonatal ICU. Applied clinical informatics. 2014 [acceso: 1/07/2019];5(02):368-87. Disponible en: https://doi.org/10.4338 /ACI-2013-09-RA-0069
Lee J, Scott DJ, Villarroel M, Clifford GD, Saeed M, Mark RG. Open-access MIMIC-II database for intensive care research. In2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2011 [acceso: 27/06/2019]. Disponible en: https://doi.org/10.1109 / IEMBS.2011.6092050.
Samarasinghe S. Neural networks for applied sciences and engineering: from fundamentals to complex pattern recognition. Auerbach publications; 2016 [acceso: 21/07/2019] Disponible en: https://www.crcpress.com/Neural-Networks-for-Applied-Sciences-and-Engineering-From-Fundamentals/Samarasinghe/p/book/9780849333750
Andrioni V, Guingo BC, Santana EL, Pereira WCA, Infantosi AFC. Comparison of artificial neural networks using texture parameters in the recognition of lesions in mammograms digitized. In: Health Care Exchanges (PAHCE), 2011 Pan American. IEEE; 2011 [acceso: 16/07/2019]. Disponible en: https://doi.org/10.1109/pahce.2011.5871944
Herdman TH, Kamitsuru S. Diagnósticos de enfermagem da NANDA: definições e classificação 2018-2020. InDiagnósticos de enfermagem da Nanda: definições e classificação 2018-2020. Philadelphia: NANDA; 2018 [acceso: 16/07/2019]. Disponible en: http://nascecme.com.br/2014/wp-content/uploads/2018/08/NANDA-I-2018_2020.pdf
Behrends M, Kupka T, Schmeer R, Meyenburg-Altwarg I, Marschollek M. Knowledge Transfer in Health Care Through Digitally Collecting Learning Experiences-Results of Witra Care. Studies in health technology and informatics. 2016 [acceso: 16/07/2019];225:287-91. Disponible em: https://www.ncbi.nlm.nih.gov/pubmed/27332208
Espinoza-Venegas M, Sanhueza-Alvarado O, Ramírez-Elizondo N, Sáez-Carrillo K. Validação do construto e da confiabilidade de uma escala de inteligência emocional aplicada a estudantes de enfermagem. Revista latino-americana de enfermagem. 2015 [acceso: 16/07/2019];23(1):139-47. DOI: https://doi.org/10.1590/0104-1169.3498.2535
Duan Y, Zhou G, Zhang Y, Lan Z, Chi C, Yan W. Neural Network Based Clinical Treatment Decision Support System for Co-existing Medical Conditions. In2018 IEEE Third International Conference on Data Science in Cyberspace (DSC) IEEE. 2018 [acceso: 16/07/2019]. Disponible en: https://doi.org/10.1109/DSC.2018.00027