2020, Número 2
Propuesta de prototipo de aplicación de Android para diagnósticos de enfermería utilizando redes neuronales artificiales
Idioma: Portugués
Referencias bibliográficas: 25
Paginas: 1-15
Archivo PDF: 387.39 Kb.
RESUMEN
Introducción: La sistematización de la atención de enfermería debe ser implementada, especialmente en el caso de que haya un nivel más avanzado de atención con pacientes, como en las unidades de cuidados intensivos, que son lugares reconocidos donde se concentran gran experiencia y tecnologías.Objetivo: Proponer un modelo de un Sistema de Apoyo a la Decisión utilizando redes neuronales artificiales para la elaboración de diagnósticos de enfermería a través de una aplicación de Androide.
Métodos: Este estudio se caracteriza por ser un tipo de prototipo metodológico y tecnológico en el que se analizarán los signos vitales de los pacientes ingresados en una unidad de cuidados intensivos. Los datos se obtendrán de la base de datos de Monitoreo Inteligente de Parámetros Intensivos de Cuidados Intensivos, que contiene señales fisiológicas y series de signos vitales capturados de monitores de pacientes, obtenidos de los sistemas de información médica hospitalaria de miles de pacientes en unidades de cuidados intensivos.
Resultados: La aplicación, en su fase final de implementación, está diseñada con pantallas activas trabajadas junto con un cuerpo de profesionales de enfermería que dieron su opinión sobre las utilidades deseadas y las primeras impresiones.
Conclusiones: En este momento, se están realizando pruebas para la capacitación de la Red Neural Artificial, y se espera utilizar una aplicación para promover diagnósticos de enfermería a partir de signos vitales del paciente, evaluaciones generales de salud e información del historial médico electrónico del paciente, junto con el juicio clínico y crítico de la enfermera profesional.
REFERENCIAS (EN ESTE ARTÍCULO)
Remizoski J, Rocha MM, Vall J. Dificuldades na implantação da sistematização da assistência de enfermagem-SAE: uma revisão teórica. Cadernos da Escola de Saúde. Curitiba. 2017 [acceso: 21/06/2019];1(3):1-14. Disponible en: http://portaldeperiodicos.unibrasil.com.br/index.php/cadernossaude/article/viewFile/2298/1871
Lo CK, Chang SS, Chuang CH, Chen HC. A Mobile Nursing App Applying to the Wound Care and Drug Administration of Patients. In 2015 9th International Conference on Mobile and Internet Services in Ubiquitous Computing. IEEE. 2015 [acceso: 21/05/2019]. Disponible en: https://doi.org/10.1109/IMIS.2015.61
Schwonke CR, Lunardi Filho WD, Lunardi VL, Santos SS, Barlem EL. Perspectivas filosóficas do uso da tecnologia no cuidado de enfermagem em terapia intensiva. Rev Bras Enferm, Brasília. 2011 [acceso: 15/07/2019];64(1):189-92. Disponible en: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0034-71672011000100028
Hum RS, Cato K, Sheehan B, Patel S, Duchon J, De la Mora P, et al. Developing clinical decision support within a commercial electronic health record system to improve antimicrobial prescribing in the neonatal ICU. Applied clinical informatics. 2014 [acceso: 1/07/2019];5(02):368-87. Disponible en: https://doi.org/10.4338 /ACI-2013-09-RA-0069
Lee J, Scott DJ, Villarroel M, Clifford GD, Saeed M, Mark RG. Open-access MIMIC-II database for intensive care research. In2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2011 [acceso: 27/06/2019]. Disponible en: https://doi.org/10.1109 / IEMBS.2011.6092050.
Samarasinghe S. Neural networks for applied sciences and engineering: from fundamentals to complex pattern recognition. Auerbach publications; 2016 [acceso: 21/07/2019] Disponible en: https://www.crcpress.com/Neural-Networks-for-Applied-Sciences-and-Engineering-From-Fundamentals/Samarasinghe/p/book/9780849333750
Andrioni V, Guingo BC, Santana EL, Pereira WCA, Infantosi AFC. Comparison of artificial neural networks using texture parameters in the recognition of lesions in mammograms digitized. In: Health Care Exchanges (PAHCE), 2011 Pan American. IEEE; 2011 [acceso: 16/07/2019]. Disponible en: https://doi.org/10.1109/pahce.2011.5871944
Herdman TH, Kamitsuru S. Diagnósticos de enfermagem da NANDA: definições e classificação 2018-2020. InDiagnósticos de enfermagem da Nanda: definições e classificação 2018-2020. Philadelphia: NANDA; 2018 [acceso: 16/07/2019]. Disponible en: http://nascecme.com.br/2014/wp-content/uploads/2018/08/NANDA-I-2018_2020.pdf
Behrends M, Kupka T, Schmeer R, Meyenburg-Altwarg I, Marschollek M. Knowledge Transfer in Health Care Through Digitally Collecting Learning Experiences-Results of Witra Care. Studies in health technology and informatics. 2016 [acceso: 16/07/2019];225:287-91. Disponible em: https://www.ncbi.nlm.nih.gov/pubmed/27332208
Espinoza-Venegas M, Sanhueza-Alvarado O, Ramírez-Elizondo N, Sáez-Carrillo K. Validação do construto e da confiabilidade de uma escala de inteligência emocional aplicada a estudantes de enfermagem. Revista latino-americana de enfermagem. 2015 [acceso: 16/07/2019];23(1):139-47. DOI: https://doi.org/10.1590/0104-1169.3498.2535
Duan Y, Zhou G, Zhang Y, Lan Z, Chi C, Yan W. Neural Network Based Clinical Treatment Decision Support System for Co-existing Medical Conditions. In2018 IEEE Third International Conference on Data Science in Cyberspace (DSC) IEEE. 2018 [acceso: 16/07/2019]. Disponible en: https://doi.org/10.1109/DSC.2018.00027