2019, Number 1
<< Back Next >>
Cuba y Salud 2019; 14 (1)
The contribution of oxidative stress in the learning and memory processes
González FME
Language: Spanish
References: 47
Page: 82-90
PDF size: 475.49 Kb.
ABSTRACT
Objectives: to delve into the most recent aspects of the existing link between oxidative metabolism and cognitive
deterioration present in neurodegenerative processes.
Development: Alzheimer’s disease is the cause of disability with the greatest social and economic impact in the developed
world, for this reason, there is a growing interest in the study of these processes associated with advanced age. Oxidative
damage to the main cellular components is irreversible and accumulates over time, establishing the molecular basis of the
pathophysiology of brain aging. Among the elements involved in the formation and conservation of memory include the
activity of receptors, enzymes, transcription factors and ion channels that are sensitive to changes in the redox state of the
intracellular medium and affect the mechanisms of synaptic plasticity that it constitutes the cellular model that underlies
learning and memory.
Conclusions: this review provides a better understanding of the molecular processes linked to the loss of oxidative
homeostasis that lead to cell death and, consequently, to cognitive dysfunction in natural aging and the pathologies of
the nervous system associated with it.
REFERENCES
Ritter, L., Kleemann, D., Hickmann, F.H., Amaral, A.U., Sitta, A., Wajner, M., and Ribeiro, C.A. 2015. Disturbance of energy and redox homeostasis and reduction of Na+,K+-ATPase activity provoked by in vivo intracerebral administration of ethylmalonic acid to young rats. Biochim. Biophys. Acta. 1852:759-767.
Fonseca, A.C., Moreira, P.I., Oliveira, C.R., Cardoso, S.M., Pinton, P., and Pereira, C.F. 2015. Amyloid-beta disrupts calcium and redox homeostasis in brain endothelial cells. Mol. Neurobiol. 51:610-622.
Gundersen, V., Storm-Mathisen, J., and Bergersen, L.H. 2015. Neuroglial Transmission. Physiol Rev. 95:695-726.
Schrag, M., Mueller, C., Zabel, M., Crofton, A., Kirsch, W.M., Ghribi, O., Squitti, R., and Perry, G. 2013. Oxidative stress in blood in Alzheimer’s disease and mild cognitive impairment: a meta-analysis. Neurobiol. Dis. 59:100-10. doi: 10.1016/j.nbd.2013.07.005. Epub@2013 Jul 15.:100-110.
Carvalho, A.N., Marques, C., Guedes, R.C., Castro-Caldas, M., Rodrigues, E., van, H.J., and Gama, M.J. 2016. S-Glutathionylation of Keap1: a new role for glutathione S-transferase pi in neuronal protection. FEBS Lett. 590:1455-1466.
Giordano, G., White, C.C., and Costa, L.G. 2011. Assessment of glutathione homeostasis. Methods Mol. Biol. 758:205-14. doi: 10.1007/978-1-61779-170-3_14.:205-214.
Koizumi, S. 2015. [Gliaotransmission and brain functions]. Nihon Shinkei Seishin Yakurigaku Zasshi. 35:5-9.
Mandal, P.K., Tripathi, M., and Sugunan, S. 2012. Brain oxidative stress: detection and mapping of anti-oxidant marker ‘Glutathione’ in different brain regions of healthy male/female, MCI and Alzheimer patients using non-invasive magnetic resonance spectroscopy. Biochem. Biophys. Res. Commun. 417:43-48.
Yan, X., Jiang, E., Gao, M., and Weng, H.R. 2013. Endogenous activation of presynaptic NMDA receptors enhances glutamate release from the primary afferents in the spinal dorsal horn in a rat model of neuropathic pain. J. Physiol. 591:2001-2019.
Poleszak, E., Serefko, A., Szopa, A., Wosko, S., Dudka, J., Wrobel, A., Oniszczuk, T., and Wlaz, P. 2013. NMDA receptor activation antagonizes the NMDA antagonist-induced antianxiety effect in the elevated plus-maze test in mice. Pharmacol. Rep. 65:1124-1131.
Johnson, W.M., Wilson-Delfosse, A.L., and Mieyal, J.J. 2012. Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients. 4:1399-1440.
Trivedi, M.S., and Deth, R. 2015. Redox-based epigenetic status in drug addiction: a potential contributor to gene priming and a mechanistic rationale for metabolic intervention. Front Neurosci. 8:. doi:10.3389/fnins.2014.00444.:doi.
Bar-Or, D., Bar-Or, R., Rael, L.T., and Brody, E.N. 2015. Oxidative stress in severe acute illness. Redox Biol. 4:340-5. doi:10.1016/j.redox.2015.01.006.:340-345.
Haddadi, M., Jahromi, S.R., Sagar, B.K., Patil, R.K., Shivanandappa, T., and Ramesh, S.R. 2014. Brain aging, memory impairment and oxidative stress: a study in Drosophila melanogaster. Behav. Brain Res. 259:60-9. doi: 10.1016/j.bbr.2013.10.036. Epub@2013 Oct 30.:60-69.
Meunier, C., Wang, N., Yi, C., Dallerac, G., Ezan, P., Koulakoff, A., Leybaert, L., and Giaume, C. 2017. Contribution of Astroglial Cx43 Hemichannels to the Modulation of Glutamatergic Currents by D-Serine in the Mouse Prefrontal Cortex. J. Neurosci. 37:9064- 9075.
Polidori, M.C., and Nelles, G. 2014. Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease - challenges and perspectives. Curr. Pharm. Des. 20:3083-3092.
Belviranli, M., Okudan, N., Atalik, K.E., and Oz, M. 2013. Curcumin improves spatial memory and decreases oxidative damage in aged female rats. Biogerontology. 14:187-196.
Yabuki, Y., and Fukunaga, K. 2013. Oral administration of glutathione improves memory deficits following transient brain ischemia by reducing brain oxidative stress. Neuroscience. 250:394-407. doi: 10.1016/j.neuroscience.2013.07.017. Epub@2013 Jul 18.:394-407.
Correia, S.C., Santos, R.X., Santos, M.S., Casadesus, G., LaManna, J.C., Perry, G., Smith, M.A., and Moreira, P.I. 2013. Mitochondrial abnormalities in a streptozotocin-induced rat model of sporadic Alzheimer’s disease. Curr. Alzheimer Res. 10:406- 419.
Sultana, R., and Butterfield, D.A. 2013. Oxidative modification of brain proteins in Alzheimer’s disease: perspective on future studies based on results of redox proteomics studies. J Alzheimers. Dis. 33 Suppl 1:S243-51. doi: 10.3233/JAD-2012- 129018.:S243-S251.
Ansari, M.A., and Scheff, S.W. 2011. NADPH-oxidase activation and cognition in Alzheimer disease progression. Free Radic Biol Med. 51:171-178.
Rajasekar, N., Dwivedi, S., Tota, S.K., Kamat, P.K., Hanif, K., Nath, C., and Shukla, R. 2013. Neuroprotective effect of curcumin on okadaic acid induced memory impairment in mice. Eur. J. Pharmacol. 715:381-394.
Duffy, S.L., Lagopoulos, J., Hickie, I.B., Diamond, K., Graeber, M.B., Lewis, S.J., and Naismith, S.L. 2014. Glutathione relates to neuropsychological functioning in mild cognitive impairment. Alzheimers. Dement. 10:67-75.
Pandya, J.D., Readnower, R.D., Patel, S.P., Yonutas, H.M., Pauly, J.R., Goldstein, G.A., Rabchevsky, A.G., and Sullivan, P.G. 2014. N-acetylcysteine amide confers neuroprotection, improves bioenergetics and behavioral outcome following TBI. Exp. Neurol. 257:106-13. doi: 10.1016/j.expneurol.2014.04.020. Epub@2014 May 1.:106-113.
Mehrotra, A., and Sandhir, R. 2014. Mitochondrial cofactors in experimental Huntington’s disease: behavioral, biochemical and histological evaluation. Behav. Brain Res. 261:345-55. doi: 10.1016/j.bbr.2013.12.035. Epub@2014 Jan 3.:345-355.
Balu, D.T., and Coyle, J.T. 2012. Neuronal D-serine regulates dendritic architecture in the somatosensory cortex. Neurosci. Lett. 517:77-81.
Bergado, J.A., Frey, S., Lopez, J., Almaguer-Melian, W., and Frey, J.U. 2007. Cholinergic afferents to the locus coeruleus and noradrenergic afferents to the medial septum mediate LTP-reinforcement in the dentate gyrus by stimulation of the amygdala. Neurobiol. Learn. Mem. 88:331-341.
Zhao, R.R., Xu, X.C., Xu, F., Zhang, W.L., Zhang, W.L., Liu, L.M., and Wang, W.P. 2014. Metformin protects against seizures, learning and memory impairments and oxidative damage induced by pentylenetetrazole-induced kindling in mice. Biochem. Biophys. Res. Commun. 448:414-417.
Almaguer-Melian, W., Bergado-Rosado, J., Pavon-Fuentes, N., Alberti-Amador, E., Merceron-Martinez, D., and Frey, J.U. 2012. Novelty exposure overcomes foot shock-induced spatial-memory impairment by processes of synaptic-tagging in rats. Proc. Natl. Acad. Sci. U. S. A. 109:953-958.
Oda, Y., Fujita, Y., Oishi, K., Nakata, Y., Takase, M., Niitsu, T., Kanahara, N., Shirayama, Y., Hashimoto, K., and Iyo, M. 2017. Alterations in glutamatergic signaling in the brain of dopamine supersensitivity psychosis and non-supersensitivity psychosis model rats. Psychopharmacology (Berl). 234:3027-3036.
Sardinha, V.M., Guerra-Gomes, S., Caetano, I., Tavares, G., Martins, M., Reis, J.S., Correia, J.S., Teixeira-Castro, A., Pinto, L., Sousa, N., and Oliveira, J.F. 2017. Astrocytic signaling supports hippocampal-prefrontal theta synchronization and cognitive function. Glia. 65:1944-1960.
Gironi, M., Bianchi, A., Russo, A., Alberoni, M., Ceresa, L., Angelini, A., Cursano, C., Mariani, E., Nemni, R., Kullmann, C., Farina, E., and Martinelli, B.F. 2011. Oxidative imbalance in different neurodegenerative diseases with memory impairment. Neurodegener. Dis. 8:129-137.
Vera, G., and Tapia, R. 2012. Activation of group III metabotropic glutamate receptors by endogenous glutamate protects against glutamate-mediated excitotoxicity in the hippocampus in vivo. J. Neurosci. Res. 90:1055-1066. Artículos de Revisión
Bardaweel, S.K., Alzweiri, M., and Ishaqat, A.A. 2014. D-Serine in neurobiology: CNS neurotransmission and neuromodulation. Can. J. Neurol. Sci. 41:164-176.
El, A.A., Albertini, G., Bentea, E., Demuyser, T., Van, E.A., Smolders, I., and Massie, A. 2015. Alterations in the motor cortical and striatal glutamatergic system and D-serine levels in the bilateral 6-hydroxydopamine rat model for Parkinson’s disease. Neurochem. Int. 88:88-96. doi: 10.1016/j.neuint.2015.07.005. Epub@2015 Jul 11.:88-96.
Almaguer-Melian, W., Rojas-Reyes, Y., Alvare, A., Rosillo, J.C., Frey, J.U., and Bergado, J.A. 2005. Long-term potentiation in the dentate gyrus in freely moving rats is reinforced by intraventricular application of norepinephrine, but not oxotremorine. Neurobiol. Learn. Mem. 83:72-78.
Bergado, J.A., Rojas, Y., Capdevila, V., Gonzalez, O., and Almaguer-Melian, W. 2006. Stimulation of the basolateral amygdala improves the acquisition of a motor skill. Restor. Neurol. Neurosci. 24:115-121.
Massaad, C.A., and Klann, E. 2011. Reactive Oxygen Species in the Regulation of Synaptic Plasticity and Memory. Antioxid. Redox Signal 14:2013-2050.
Massaad, C.A., Pautler, R.G., and Klann, E. 2009. Mitochondrial superoxide: a key player in Alzheimer’s disease. Aging (Albany. NY). 1:758-761.
Ejaz, A.M., Khan, M.M., Javed, H., Vaibhav, K., Khan, A., Tabassum, R., Ashafaq, M., Islam, F., Safhi, M.M., and Islam, F. 2013. Amelioration of cognitive impairment and neurodegeneration by catechin hydrate in rat model of streptozotocin-induced experimental dementia of Alzheimer’s type. Neurochem. Int. 62:492-501.
Tiwari, V., and Chopra, K. 2013. Resveratrol abrogates alcohol-induced cognitive deficits by attenuating oxidative-nitrosative stress and inflammatory cascade in the adult rat brain. Neurochem. Int. 62:861-869.
Barone, E., Cenini, G., Di, D.F., Martin, S., Sultana, R., Mancuso, C., Murphy, M.P., Head, E., and Butterfield, D.A. 2011. Longterm high-dose atorvastatin decreases brain oxidative and nitrosative stress in a preclinical model of Alzheimer disease: a novel mechanism of action. Pharmacol Res. 63:172-180.
Cai, Z., Zhao, B., and Ratka, A. 2011. Oxidative stress and beta-amyloid protein in Alzheimer’s disease. Neuromolecular. Med. 13:223-250.
Axelsen, P.H., Komatsu, H., and Murray, I.V. 2011. Oxidative stress and cell membranes in the pathogenesis of Alzheimer’s disease. Physiology. (Bethesda. ). 26:54-69.
Bagheri, M., Joghataei, M.T., Mohseni, S., and Roghani, M. 2011. Genistein ameliorates learning and memory deficits in amyloid beta(1-40) rat model of Alzheimer’s disease. Neurobiol Learn. Mem. 95:270-276.
Belkacemi, A., Doggui, S., Dao, L., and Ramassamy, C. 2011. Challenges associated with curcumin therapy in Alzheimer disease. Expert. Rev Mol. Med. 13:e34. doi: 10.1017/S1462399411002055.:e34.
Butterfield, D.A., Reed, T., and Sultana, R. 2011. Roles of 3-nitrotyrosine- and 4-hydroxynonenal-modified brain proteins in the progression and pathogenesis of Alzheimer’s disease. Free Radic Res. 45:59-72