2019, Número 1
<< Anterior Siguiente >>
Cuba y Salud 2019; 14 (1)
La contribución del estrés oxidativo en los procesos de aprendizaje y memoria
González FME
Idioma: Español
Referencias bibliográficas: 47
Paginas: 82-90
Archivo PDF: 475.49 Kb.
RESUMEN
Objetivos: profundizar en los aspectos más recientes de la vinculación existente entre el metabolismo oxidativo y el
deterioro cognitivo presente en los procesos neurodegenerativos.
Desarrollo: la Enfermedad de Alzheimer constituye la causa de discapacidad de mayor impacto social y económico en
el mundo desarrollado, por tal motivo, existe un creciente interés en el estudio de estos procesos asociados a la edad
avanzada. El daño oxidativo a los principales componentes celulares resulta irreversible y se acumula con el tiempo,
estableciendo la base molecular de la fisiopatología del envejecimiento cerebral. Entre los elementos involucrados en la
formación y conservación de la memoria incluyen la actividad de receptores, las enzimas, los factores de transcripción y
los canales iónicos que son sensibles a los cambios en el estado redox del medio intracelular y afectan los mecanismos de
plasticidad sináptica que constituye el modelo celular que subyace en el aprendizaje y la memoria.
Conclusiones: esta revisión aporta una mayor comprensión de los procesos moleculares vinculados con la pérdida del
homeostasis oxidante que conducen a la muerte celular y con ello a la disfunción cognitiva en el envejecimiento natural
y las patologías del sistema nervioso asociadas a éste.
REFERENCIAS (EN ESTE ARTÍCULO)
Ritter, L., Kleemann, D., Hickmann, F.H., Amaral, A.U., Sitta, A., Wajner, M., and Ribeiro, C.A. 2015. Disturbance of energy and redox homeostasis and reduction of Na+,K+-ATPase activity provoked by in vivo intracerebral administration of ethylmalonic acid to young rats. Biochim. Biophys. Acta. 1852:759-767.
Fonseca, A.C., Moreira, P.I., Oliveira, C.R., Cardoso, S.M., Pinton, P., and Pereira, C.F. 2015. Amyloid-beta disrupts calcium and redox homeostasis in brain endothelial cells. Mol. Neurobiol. 51:610-622.
Gundersen, V., Storm-Mathisen, J., and Bergersen, L.H. 2015. Neuroglial Transmission. Physiol Rev. 95:695-726.
Schrag, M., Mueller, C., Zabel, M., Crofton, A., Kirsch, W.M., Ghribi, O., Squitti, R., and Perry, G. 2013. Oxidative stress in blood in Alzheimer’s disease and mild cognitive impairment: a meta-analysis. Neurobiol. Dis. 59:100-10. doi: 10.1016/j.nbd.2013.07.005. Epub@2013 Jul 15.:100-110.
Carvalho, A.N., Marques, C., Guedes, R.C., Castro-Caldas, M., Rodrigues, E., van, H.J., and Gama, M.J. 2016. S-Glutathionylation of Keap1: a new role for glutathione S-transferase pi in neuronal protection. FEBS Lett. 590:1455-1466.
Giordano, G., White, C.C., and Costa, L.G. 2011. Assessment of glutathione homeostasis. Methods Mol. Biol. 758:205-14. doi: 10.1007/978-1-61779-170-3_14.:205-214.
Koizumi, S. 2015. [Gliaotransmission and brain functions]. Nihon Shinkei Seishin Yakurigaku Zasshi. 35:5-9.
Mandal, P.K., Tripathi, M., and Sugunan, S. 2012. Brain oxidative stress: detection and mapping of anti-oxidant marker ‘Glutathione’ in different brain regions of healthy male/female, MCI and Alzheimer patients using non-invasive magnetic resonance spectroscopy. Biochem. Biophys. Res. Commun. 417:43-48.
Yan, X., Jiang, E., Gao, M., and Weng, H.R. 2013. Endogenous activation of presynaptic NMDA receptors enhances glutamate release from the primary afferents in the spinal dorsal horn in a rat model of neuropathic pain. J. Physiol. 591:2001-2019.
Poleszak, E., Serefko, A., Szopa, A., Wosko, S., Dudka, J., Wrobel, A., Oniszczuk, T., and Wlaz, P. 2013. NMDA receptor activation antagonizes the NMDA antagonist-induced antianxiety effect in the elevated plus-maze test in mice. Pharmacol. Rep. 65:1124-1131.
Johnson, W.M., Wilson-Delfosse, A.L., and Mieyal, J.J. 2012. Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients. 4:1399-1440.
Trivedi, M.S., and Deth, R. 2015. Redox-based epigenetic status in drug addiction: a potential contributor to gene priming and a mechanistic rationale for metabolic intervention. Front Neurosci. 8:. doi:10.3389/fnins.2014.00444.:doi.
Bar-Or, D., Bar-Or, R., Rael, L.T., and Brody, E.N. 2015. Oxidative stress in severe acute illness. Redox Biol. 4:340-5. doi:10.1016/j.redox.2015.01.006.:340-345.
Haddadi, M., Jahromi, S.R., Sagar, B.K., Patil, R.K., Shivanandappa, T., and Ramesh, S.R. 2014. Brain aging, memory impairment and oxidative stress: a study in Drosophila melanogaster. Behav. Brain Res. 259:60-9. doi: 10.1016/j.bbr.2013.10.036. Epub@2013 Oct 30.:60-69.
Meunier, C., Wang, N., Yi, C., Dallerac, G., Ezan, P., Koulakoff, A., Leybaert, L., and Giaume, C. 2017. Contribution of Astroglial Cx43 Hemichannels to the Modulation of Glutamatergic Currents by D-Serine in the Mouse Prefrontal Cortex. J. Neurosci. 37:9064- 9075.
Polidori, M.C., and Nelles, G. 2014. Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease - challenges and perspectives. Curr. Pharm. Des. 20:3083-3092.
Belviranli, M., Okudan, N., Atalik, K.E., and Oz, M. 2013. Curcumin improves spatial memory and decreases oxidative damage in aged female rats. Biogerontology. 14:187-196.
Yabuki, Y., and Fukunaga, K. 2013. Oral administration of glutathione improves memory deficits following transient brain ischemia by reducing brain oxidative stress. Neuroscience. 250:394-407. doi: 10.1016/j.neuroscience.2013.07.017. Epub@2013 Jul 18.:394-407.
Correia, S.C., Santos, R.X., Santos, M.S., Casadesus, G., LaManna, J.C., Perry, G., Smith, M.A., and Moreira, P.I. 2013. Mitochondrial abnormalities in a streptozotocin-induced rat model of sporadic Alzheimer’s disease. Curr. Alzheimer Res. 10:406- 419.
Sultana, R., and Butterfield, D.A. 2013. Oxidative modification of brain proteins in Alzheimer’s disease: perspective on future studies based on results of redox proteomics studies. J Alzheimers. Dis. 33 Suppl 1:S243-51. doi: 10.3233/JAD-2012- 129018.:S243-S251.
Ansari, M.A., and Scheff, S.W. 2011. NADPH-oxidase activation and cognition in Alzheimer disease progression. Free Radic Biol Med. 51:171-178.
Rajasekar, N., Dwivedi, S., Tota, S.K., Kamat, P.K., Hanif, K., Nath, C., and Shukla, R. 2013. Neuroprotective effect of curcumin on okadaic acid induced memory impairment in mice. Eur. J. Pharmacol. 715:381-394.
Duffy, S.L., Lagopoulos, J., Hickie, I.B., Diamond, K., Graeber, M.B., Lewis, S.J., and Naismith, S.L. 2014. Glutathione relates to neuropsychological functioning in mild cognitive impairment. Alzheimers. Dement. 10:67-75.
Pandya, J.D., Readnower, R.D., Patel, S.P., Yonutas, H.M., Pauly, J.R., Goldstein, G.A., Rabchevsky, A.G., and Sullivan, P.G. 2014. N-acetylcysteine amide confers neuroprotection, improves bioenergetics and behavioral outcome following TBI. Exp. Neurol. 257:106-13. doi: 10.1016/j.expneurol.2014.04.020. Epub@2014 May 1.:106-113.
Mehrotra, A., and Sandhir, R. 2014. Mitochondrial cofactors in experimental Huntington’s disease: behavioral, biochemical and histological evaluation. Behav. Brain Res. 261:345-55. doi: 10.1016/j.bbr.2013.12.035. Epub@2014 Jan 3.:345-355.
Balu, D.T., and Coyle, J.T. 2012. Neuronal D-serine regulates dendritic architecture in the somatosensory cortex. Neurosci. Lett. 517:77-81.
Bergado, J.A., Frey, S., Lopez, J., Almaguer-Melian, W., and Frey, J.U. 2007. Cholinergic afferents to the locus coeruleus and noradrenergic afferents to the medial septum mediate LTP-reinforcement in the dentate gyrus by stimulation of the amygdala. Neurobiol. Learn. Mem. 88:331-341.
Zhao, R.R., Xu, X.C., Xu, F., Zhang, W.L., Zhang, W.L., Liu, L.M., and Wang, W.P. 2014. Metformin protects against seizures, learning and memory impairments and oxidative damage induced by pentylenetetrazole-induced kindling in mice. Biochem. Biophys. Res. Commun. 448:414-417.
Almaguer-Melian, W., Bergado-Rosado, J., Pavon-Fuentes, N., Alberti-Amador, E., Merceron-Martinez, D., and Frey, J.U. 2012. Novelty exposure overcomes foot shock-induced spatial-memory impairment by processes of synaptic-tagging in rats. Proc. Natl. Acad. Sci. U. S. A. 109:953-958.
Oda, Y., Fujita, Y., Oishi, K., Nakata, Y., Takase, M., Niitsu, T., Kanahara, N., Shirayama, Y., Hashimoto, K., and Iyo, M. 2017. Alterations in glutamatergic signaling in the brain of dopamine supersensitivity psychosis and non-supersensitivity psychosis model rats. Psychopharmacology (Berl). 234:3027-3036.
Sardinha, V.M., Guerra-Gomes, S., Caetano, I., Tavares, G., Martins, M., Reis, J.S., Correia, J.S., Teixeira-Castro, A., Pinto, L., Sousa, N., and Oliveira, J.F. 2017. Astrocytic signaling supports hippocampal-prefrontal theta synchronization and cognitive function. Glia. 65:1944-1960.
Gironi, M., Bianchi, A., Russo, A., Alberoni, M., Ceresa, L., Angelini, A., Cursano, C., Mariani, E., Nemni, R., Kullmann, C., Farina, E., and Martinelli, B.F. 2011. Oxidative imbalance in different neurodegenerative diseases with memory impairment. Neurodegener. Dis. 8:129-137.
Vera, G., and Tapia, R. 2012. Activation of group III metabotropic glutamate receptors by endogenous glutamate protects against glutamate-mediated excitotoxicity in the hippocampus in vivo. J. Neurosci. Res. 90:1055-1066. Artículos de Revisión
Bardaweel, S.K., Alzweiri, M., and Ishaqat, A.A. 2014. D-Serine in neurobiology: CNS neurotransmission and neuromodulation. Can. J. Neurol. Sci. 41:164-176.
El, A.A., Albertini, G., Bentea, E., Demuyser, T., Van, E.A., Smolders, I., and Massie, A. 2015. Alterations in the motor cortical and striatal glutamatergic system and D-serine levels in the bilateral 6-hydroxydopamine rat model for Parkinson’s disease. Neurochem. Int. 88:88-96. doi: 10.1016/j.neuint.2015.07.005. Epub@2015 Jul 11.:88-96.
Almaguer-Melian, W., Rojas-Reyes, Y., Alvare, A., Rosillo, J.C., Frey, J.U., and Bergado, J.A. 2005. Long-term potentiation in the dentate gyrus in freely moving rats is reinforced by intraventricular application of norepinephrine, but not oxotremorine. Neurobiol. Learn. Mem. 83:72-78.
Bergado, J.A., Rojas, Y., Capdevila, V., Gonzalez, O., and Almaguer-Melian, W. 2006. Stimulation of the basolateral amygdala improves the acquisition of a motor skill. Restor. Neurol. Neurosci. 24:115-121.
Massaad, C.A., and Klann, E. 2011. Reactive Oxygen Species in the Regulation of Synaptic Plasticity and Memory. Antioxid. Redox Signal 14:2013-2050.
Massaad, C.A., Pautler, R.G., and Klann, E. 2009. Mitochondrial superoxide: a key player in Alzheimer’s disease. Aging (Albany. NY). 1:758-761.
Ejaz, A.M., Khan, M.M., Javed, H., Vaibhav, K., Khan, A., Tabassum, R., Ashafaq, M., Islam, F., Safhi, M.M., and Islam, F. 2013. Amelioration of cognitive impairment and neurodegeneration by catechin hydrate in rat model of streptozotocin-induced experimental dementia of Alzheimer’s type. Neurochem. Int. 62:492-501.
Tiwari, V., and Chopra, K. 2013. Resveratrol abrogates alcohol-induced cognitive deficits by attenuating oxidative-nitrosative stress and inflammatory cascade in the adult rat brain. Neurochem. Int. 62:861-869.
Barone, E., Cenini, G., Di, D.F., Martin, S., Sultana, R., Mancuso, C., Murphy, M.P., Head, E., and Butterfield, D.A. 2011. Longterm high-dose atorvastatin decreases brain oxidative and nitrosative stress in a preclinical model of Alzheimer disease: a novel mechanism of action. Pharmacol Res. 63:172-180.
Cai, Z., Zhao, B., and Ratka, A. 2011. Oxidative stress and beta-amyloid protein in Alzheimer’s disease. Neuromolecular. Med. 13:223-250.
Axelsen, P.H., Komatsu, H., and Murray, I.V. 2011. Oxidative stress and cell membranes in the pathogenesis of Alzheimer’s disease. Physiology. (Bethesda. ). 26:54-69.
Bagheri, M., Joghataei, M.T., Mohseni, S., and Roghani, M. 2011. Genistein ameliorates learning and memory deficits in amyloid beta(1-40) rat model of Alzheimer’s disease. Neurobiol Learn. Mem. 95:270-276.
Belkacemi, A., Doggui, S., Dao, L., and Ramassamy, C. 2011. Challenges associated with curcumin therapy in Alzheimer disease. Expert. Rev Mol. Med. 13:e34. doi: 10.1017/S1462399411002055.:e34.
Butterfield, D.A., Reed, T., and Sultana, R. 2011. Roles of 3-nitrotyrosine- and 4-hydroxynonenal-modified brain proteins in the progression and pathogenesis of Alzheimer’s disease. Free Radic Res. 45:59-72