2020, Number 1
<< Back Next >>
Geroinfo 2020; 15 (1)
Intestinal microbiota and aging
Contreras AR, Cabrera RI
Language: Spanish
References: 69
Page:
PDF size: 241.60 Kb.
ABSTRACT
Evidence suggests that the intestinal microbiota is associated with inflammation and chronic health conditions in the course of aging, which could generate different forms of intervention to reduce the aging process. Other research also indicates the reduction of the diversity of the intestinal microbiota and its metabolic capacities, such as the low level of short-chain fatty acids in advanced ages, which can lead to increases in intestinal transit time. This eventuality produces an increase in the density of the fecal material by reducing the content of water and dissolved oxygen that favors the development of facultative and strict anaerobic bacteria, whose metabolism could increase proteolytic activity and thereby generate changes in the pattern of fatty acids short chain, which favor the increase in branching which could lead to effects of energy metabolism at the central level. From the set of results presented, it is suggested that the use of different means of intervention that favor the limitation of the increase in the intestinal microbiota Proteobacteria, associated with aging, could have a beneficial effect on the physiological functions that are affected during aging.
REFERENCES
Scholtens PA, Oozeer R, Martin R, Amor KB, Knol J. The early settlers: intestinal microbiology in early life. Annu Rev Food Sci Technol. 2012; 3:425–47. Disponible en URL: doi:10.1146/annurev-food-022811101120.
Zoetendal EG, Rajilic-Stojanovic M, de Vos WM. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 2008; 57:1605–15. Disponible en URL: doi: 10.1136/gut.2007.133603.
Moles L, Gomez M, Heilig H, Bustos G, Fuentes S, de Vos W, et al. Bacterial diversity in meconium of preterm neonates and evolution of their fecalmicrobiota during the first month of life. PLoS One 2013; 8:e66986.
Faa G, Gerosa C, Fanni D, Nemolato S, Fanos V. Factors influencing the development of a personal tailored microbiota in the neonate, with particular emphasis on antibiotic therapy. J Matern Fetal Neonatal Med 2013; 26:35–43.
Fanaro S, Chierici R, Guerrini P, Vigi V. Intestinal microflora in early infancy: composition and development. ActaPaediatr. 2003; 91(441):48– 55.
Orrhage K, Nord CE. Factors controlling the bacterial colonization of the intestine in breast fed infants. ActaPaediatr. 1999; 88(430):47–57.
Yoshioka H, Iseki K, Fujita K. Development and differences of intestinal flora in the neonatal period in breast-fed and bottle-fed infants. Pediatrics. 1983; 72:317–21.
Rajilic-Stojanovic M, Heilig HG, Molenaar D, Kajanden K, Surakka A, Smidt H, De VosMW.Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ Microbiol. 2009; 11:1736–51. Disponible en URL: doi: 10.1111/j.1462-2920.2009.01900.x .
Sanz Y. Gut microbiota and probiotics in maternal and infant health. Am J ClinNutr. 2011; 94:2000S–5. Disponible en URL: doi: 10.3945/ajcn.110.001172 .
Koenig JE, Spor A, Scalfone N, Fricken DA, Stombaugh J, Knigh R, Angenet TL, et al. Succession of microbial consortia in the developing infant gut microbiome. ProcNatlAcad Sci U S A. 2011; 108(suppl1):4578–85. Disponible en URL: doi: 10.1073/pnas.1000081107.
Ottman N, Smidt H, de Vos WM, Belzer C. The function of our microbiota: who is out there and what do they do? Front Cell Infect Microbiol. 2012;2:104. Disponible en URL: doi: 10.3389/fci.
Zhao L, Wang G, Siegel P. Quantitative genetic background of the host influences gut microbiomes in chickens. Sci Rep. 2013; 3:1163. Disponible en URL: doi: 10.1038/srep01163mb.2012.00104.
Khachatryan ZA, Ktsoyan ZA, Manukyan GP, Kelly D, Ghazaryan KA, Aminov RI. Predominant role of host genetics in controlling the composition of gut microbiota. PLoS One. 2008; 3(8):e3064. Disponible en URL: doi: 10.1371/journal.pone.0003064.
Stewart JA, Chadwick VS, Murray A. Investigations into the influence of host genetics on the predominant eubacteria in the faecal microflora of children. J Med Microbiol. 2005; 54:1239–42. Disponible en URL: doi: 10.1099/jmm. 0.46189-0.
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, et al. A human gut microbial gene cataloge established by metagenimic sequencing. Nature , 2010; 464 : 59-65 [ artículolibre de PMC ] [ PubMed ]
Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT: Short chain fatty acids in human large intestine, portal, hepatic and venous. Gut 1987; 28:1221-7 [ Artículogratuito de PMC ] [ PubMed ]
Louis P, Hold GL, Flint HJ: The gut Microbiota bacterial metabolites and colorectal cáncer. Nat Rev Microbiol 2014; 12:661-72 [PubMed ]
Rey FE, Faith JJ, Bain J, Muehlbauer MJ, Stevens RD, Newgard CB, Gordon JI. Dissecting the in vivo metabolic potential of two human human gut acetongens. J BiolChem 2010; 285:22082-90. [Artículogratuito de PMC] [PubMed ]
Scott KP, Martin JC, Campbell G, Mayer CD, Flint HJ. Whole genome transcription profiling reveals gene up regulated on fucose in the human gut bacterium ¨Roseburiainulinivorans". J Bacteriol 2006; 188:4340-9. [Artículogratuito de PMC] [PubMed]
Duncan SH, Barcenilla A, Stewart CS, Pryde SE, Flint HJ. Acetate utilization and butyrylcoenzime A (CoA): acetate trnsferase in butirate producing bacteria from the human large intestine. Appl Environ Microbiol 2002; 68:5186-90. [Artículolibre de PMC] [PubMed]
Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F: From dietary fiber to host physiology: short chain fatty acids as key bacterial metabolites. Cell 2016; 165:1332-45 [ PubMed ]
Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S: Host gut Microbiota metabolic interactions. Science 2012; 336:1262-7. [PubMed]
Benassi-Evans B, Clifton P, Noakes M, Fenech M. High protein/high red meat and high cabohydrate weight loss do not differ in their effect on fecal wátergenotoxicity tested by use of the WILS 2 NS cell line and with other biomarkers of bowel health. Mutat Res 2010; 703:130-6. [PubMed]
Dankert J, Zijlstra JB, Wolthers BG. Volatile fatty acids in human peripheral and portal blood: quantitative determination vacuum destillation and gas chromatography. ClinChimActa 1981; 110:301-7. [PubMed]
Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ. Colon health: fermentation and sort chain volatile fatty acids. J ClinGastroenterol 2006; 40:235-43. [PubMed]
Bergman EN. Gastrointestinal tract short volatile fatty acids energetic contributions in diverse species. PhysiolRev 1990; 70:567-90. [PubMed]
Verbeke KA, Boobis AR, Chiodini A, Edwards CA, Franck A, Kleerebezem M, Nauta A, et al. Towards microbial fermentation metabolites as markers for health beneficts of prebiotics. Nutr Res Rev 2015; 28: 42-66. [Artículolibre de PMC] [PubMed]
van der Beek CM, Bloemen JG, van den Broek MA, Lenaerts K, Venema K, Buurman WA, Dejong CH. Hepatic uptake or rectally administered butyrate prevents an increase in systemic butyrate concentration in humans. J Nutr 2015; 145:2019-24. [PubMed]
Jakobsdottir G, Jädert C, Holm L, Nyman ME. Propionic and butyric acids formed in caecum of rats fed highly fermentable dietary fibre are reflected in portal and aortic serum. Br J Nutr 2013; 110:1565-72. [PubMed]
Miyoshi M, Sakaki H, Usami M, Iizuka N, Shuno K, Aoyama M, Usami Y. Oral administration of tributyrin increases concentration of butyrate in the portal vein and prevents lipopolysaccharid induced liver injury in rats. ClinNutr 2011; 30:252-8. [PubMed]
Informe Mundial sobre el envejecimiento y la salud. Organización Mundial de la Salud, 2015. Sitio WEB. Disponible en URL: http://www.who.int/WHO_FWC_ALC_15.01.pdf.
Envejecimiento y ciclo de vida. Datos interesantes acerca del envejecimiento. [Articulo en Internet]. 2019 [citado 2 noviembre 2019]. Disponible en URL: https://www.who.int/ageing/about/facts/es/
Envejecimiento Poblacional. Primer Informe. Edición 2011. Oficina Nacional de Estadística e Información. República de Cuba. Disponible en URL: http://www.one.cu
Kenyon CJ. The genetics of aging. Nature 2010; 464(7288):504-12.
Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6):1194-217.
Biagi E, Candela M, Fairweather-Tait S, Franceschi C, Brigidi P. Aging of the human metaorganism: The microbial counterpart. Age 2012; 34(1):247-67.
Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao JZ, Abe F, Osawa R. Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiol 2016;16(1):90.
O’ToolePW, Jeffery IB. Gut microbiota and aging. Science 2015; 350 (6265):1214-5.
Rampelli S, Candela M, Turroni S, Biagi E, Collino S, Franceschi C, O’Toole PW, Brigidi P. Functional metagenomics profiling of intestinal microbiome in extreme ageing. Aging 2013; 5 (12):902-12.
Rios-Covian D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilan CG, Salazar N. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 2016; 7:185.
Falony G, Vieira-Silva S, Raes J. Richness and ecosystem development across faecal snapshots of the gut microbiota. NatureMicrobiology2018; (3):526-8. Disponible en:http:// www.nature.com/naturemicrobiology
Rogers GB, Keatin DJ, Young RL, Wong M-L, Licinio J, Wesslingh S. From gut dysbiosis to altered brain function and mentalillness: mechanisms and pathways. Molecular Psychiatr 2016; 21:738-48. Disponible en://doi:10.1038/mp.2016.50
Collino S, Montoliu I, Scherer M, Mari D, Salvioli S, Bucci L, Ostan R, et al. Metabolic signatures of extreme longevity in northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. PLoS One 2013; 8(8):e56564.
Biagi E, Candela M, Turroni S, Garagnani P, Franceschi C, Brigidi P. Aging and gut microbes: Perspectives for health maintenance and longevity. Pharmacol Res. 2013; 69(1):11-20.
Lakshminarayanan B, Stanton C, O’Toole PW, Ross RP. Compositional dynamics of the human intestinal microbiota with aging: Implications for health. J NutrHealthAging. 2014; 18(9):773-86.
Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004; 118(2):229-41.
Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014; 157(1):121-41.
Abt MC, Osborne LC, Monticelli LA, Doering TA, AlenghatT, Sonnenberg GF, Paley MA, et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity. 2012; 37(1):158-70.
Belkaid Y, Naik S. Compartmentalized and systemic control of tissue immunity by commensals. Nat Immunol. 2013; 14(7):646-53.
Yoo BB, Mazmanian SK. The enteric network: Interactions between the immune and nervous systems of the gut. Immunity. 2017; 46(6):910-26.
Bouskra D, BrezillonC, Berard M, Werts C, Varona R, Boneca IG, Eberl G. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis.Nature 2008; 456(7221):507-10.
Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 2005; 122(1):107-18.
Ivanov II, Fruto LR, Manel L, Yoshinaga K, Rifkin DB, Sartor RB, Finlay BB, Littman DR. Specific microbiota direct the differentiation of IL-17producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 2008; 4(4):337-49.
Christensen HR, Frokiar H, PetskaJJ. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J Immunol 2002; 168(1):171-8.
Kelsall BL, Leon F. Involvement of intestinal dendritic cells in oral tolerance, immunity to pathogens, and inflammatorybowel disease. Immunol Rev. 2005; 20(1):132-48.
Maffei VJ, Kim S, Blanchard E, Luo M, Jazwinski SM, Taylor CM, Welsh DA. Biological aging and the human gut microbiota. J Gerontol A BiolSci Med Sci. 2017; 72(11):1474-82. Disponible en URL: //doi:10.1093/gerona/glx042.
Jackson MA, Jeffery IB, Beaumont M, Bell JT, Clark AG, Ley RE, O’Toole PW, Spector TD, Steves CJ. Signatures of early frailty in the gut microbiota. Genome Med. 2016; 8(1):8.
Jeffery IB, Lynch DB, O’Toole PW. Composition and temporal stability of the gut microbiota in older persons. ISMEJ. 2016; 10(1):170-82.
Kumar A, Wu H, Collier-Hyams LS, Hansen JM, Li T, Yamoah K, Pan ZQ, Jones DP, Neish AS. Commensal bacteria modulate cullindependent signaling via generation ofreactive oxygen species. EMBO J. 2007; 26(21):4457-66.
Kelly CP, Pothoulakis C, LaMont JT. Clostridium difficile Colitis. N Engl J Med. 1994; 330(4):257-62.
Pamer EG. Immune responses to commensal and environmental microbes. Nat Immunol. 2007; 8(11):1173-8.
Sansonetti PJ. To be or not to be a pathogen: That is the mucosally relevant question. Mucosal Immunol. 2011; 4(1):8-14.
Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. NatRevImmunol. 2004; 4(6):478-85.
Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, Nikk¨ila J, et al. Through aging, and beyond: Gut microbiota andinflammatory status in seniors and centenarians. PloS One. 2010; 5(5):e10667.
Man AL, Gicheva N, Nicoletti C. The impact of aging on the intestinal epithelial barrier and immune system. Cell Immunol. 2014; 289(1-2):1128.
Nagpal R, Yadav H. Bacterial translocation from the gut to the distant organs: An overview. Ann NutrMetab. 2017; 71(1):11-6.
Schwab L, Goroncy L, Palaniyandi S, Gautam S, TriantafyllopoulouA, Mocsai A, Reichardt W, et al. Neutrophil granulocytes recruited upon translocation of intestinal bacteria enhance graft-versus-host disease via tissue damage. Nat Med. 2014; 20(6):648-54.
Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology. 2014; 146(6):1513-24.
Nagpal R, Kumar M, Yadav AK, Hemalatha R, YadavH, Marotta F, Yamashiro Y. Gut microbiota in health and disease: An overview focused on metabolic inflammation.Benef Microbes 2016; 7(2):181-94.