2020, Number 5
<< Back Next >>
Rev Fac Med UNAM 2020; 63 (5)
SARS-CoV-2 Infection (COVID 19) and its Imaging Findings
Muñoz-Jarillo NY, Arenal-Serna J, Muñoz-Jarillo R, Camacho-ZE
Language: Spanish
References: 24
Page: 18-25
PDF size: 607.69 Kb.
ABSTRACT
Due to the emergence of the pandemic caused by the SARSCoV-
2 virus (coronavirus disease or COVID-19) the generalities
since its emergence, pathophysiology and clinical picture, as
well as the findings observed in imaging methods such as
x-ray, tomography and ultrasound should be disseminated
and known to all health personnel involved in the diagnosis
and treatment of patients. This article is an overview of
the clinical and radiological characteristics observed in the
infection, the limitations of the different imaging methods,
as well as their correlation with the time of evolution of the
disease. Additionally, reference is made to the use of artificial
intelligence in radiology for the diagnosis of COVID-19.
REFERENCES
Yang R, Li X, Huan L, et al. Chest CT Severity Score: An Imaging Tool for Assessing Severe COVID-19. RSNA, Radiology: Cardiothoracic Imaging. 2020;2(2). Disponible en: https://pubs.rsna.org/doi/full/10.1148/ryct.2020200047
Zhao X, Liu B, Yu Y, et al. COVID-19 patient with initially negative RT-PCR. ESR [Internet] 2020 [Consultado 2020]. Disponible en: https://www.eurorad.org/case/16631
Kooraki S, Hosseiny M, Myers L. Coronavirus (COVID-19) Outbreak: What the Department of Radiology Should Know. JACR. 2020;4:447-51.
Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin H-J, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil Med Res. 2020;7(1):11.
Tran J, Glavis-Bloom J, Bryan T. COVID-19 patient presenting with initial gastrointestinal symtoms. ESR [Internet] 2020 [Consultado 2020]. Disponible en: https://www. eurorad.org/case/16654
Pan Y, Guan H. Imaging changes in patients with 2019- nCov. Eur Radiol [Internet]. 2020 [Consultado 2020]. Disponible en: https://link.springer.com/article/10.1007/ s00330-020-06713-z#citeas
Wong HYF, Lam HYS, Fong AH-T, et al. Frequency and Distribution of Chest Radiographic Findings in COVID-19 Positive Patients. RSNA, Radiology [Internet]. 2019 [Consultado 2020]. Disponible en: https://pubs.rsna.org/doi/ pdf/10.1148/radiol.2020201160
Akl E, Blazic I, Yaacoub S, et al. Use of Chest Imaging in the Diagnosis and Management Of COVID-19: a WHO Rapid Advice Guide. Radiology. [Internet]. 2020 [consultado 2020]. Disponible en: https://doi.org/10.1148/ radiol.2020203173
Ng M-Y, Lee EYP, Yang J, et al. Imaging Profile of the COVID-19 Infection: Radiologic Findings and Literature Review. RSNA, Radiology: Cardiothoracic Imaging. 2020;2(1):e200034.
Bandirali M, Sconfienza LM, Serra R, et al. Chest X-ray findings in asymptomatic and minimally symptomatic quarantined patients in Codogno, Italy. RSNA, Radiology [Internet] 2020 [Consultado 2020]; 201102. Disponible en: https://pubs.rsna.org/doi/10.1148/radiol.2020201102
BSTI. [Internet]. COVID-19 BSTI Reporting Templates and Codes. 22/05/2020. [Consultado 2020]. Disponible en: https://www.bsti.org.uk/covid-19-resources/covid-19- bsti-reporting-templates
Simpson S, Kay FU, Abbara S, et al. Radiological Society of North America Expert Consensus Statement on Reporting Chest CT Findings Related to COVID-19. Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA. RSNA, Radiology: Cardiothoracic Imaging. 2020;2(2):e200152.
Li X, Zeng X, Liu B, et al. COVID-19 Infection Presenting with CT Halo Sign. RSNA, Radiology: Cardiothoracic Imaging. 2020;2(1):e200026.
Wu Y, Xie Y-l, Wang X. Longitudinal CT Findings in COVID-19 Pneumonia: Case Presenting Organizing Pneumonia Pattern. RSNA, Radiology: Cardiothoracic Imaging. 2020;2(1):e200031.
Prokop M, Van Everdingen W, Van Rees Vellinga T, et al. CO-RADS: A Categorical CT Assessment Scheme for Patients Suspected of Having COVID-19 Definition and Evaluation. Radiology. [Internet] 2020 [consultado 2020]. 296 (2). Disponible en: https://doi.org/10.1148/ radiol.2020201473
Poyiadji1 N, Shahin G, Noujaim D, et al. COVID-19–associated Acute Hemorrhagic Necrotizing Encephalopathy: CT and MRI Features. RSNA, Radiology. 2020;201187.
Klironomos S, Tzortzakakis A, Kits A, et al. Nervous System Involvement in COVID-19: Results from a Retrospective Consecutive Neuroimaging Cohort. Radiology. [Internet] 2020 [consultado 2020]. Disponible en: https:// doi.org/10.1148/radiol.20202027915
Wong A, Olusanya O, Wilkinson J, et al. Ultrasound in Times of COVID-19. ICU MANAGEMENT & PRACTICE. [Internet] 2020 [consultado 2020]; 20 (1). Disponible en: https://healthmanagement.org/c/icu/issuearticle/ ultrasound-in-times-of-covid-19
Qian-Yi Peng, Xiao-Ting Wang, Li-Na Zhang, et al. Findings of lung ultrasonography of novel corona virus pneumonia during the 2019-2020. ICM Journal - ESICM [Internet] 2020 [consultado 2020];46(5):849-850. Disponible en: https://link.springer.com/content/pdf/10.1007/s00134- 020-05996-6.pdf
Carrillo R, Carillo J, Carrillo L, et al. Patrones ultrasonograficos pulmonares en el enfermo grave. Asociación Mexicana de Medicina Crítica y Terapia Intensiva. [Internet] 2020 [consultado 2020];25(1):24-32. Disponible en: https://www.medigraphic.com/pdfs/medcri/ti-2011/ ti111d.pdf
Soccorsa S, Boccatonda A, Montanari M, et al. Thoracic ultrasound and SARS-COVID-19: a pictorial essay. Journal of Ultrasound [Internet]. 2020 [consultado 2020];23:217-221. Disponible: https://link.springer.com/ content/pdf/10.1007/s40477-020-00458-7.pdf
Huang L, Han R, Ai T, et al. Serial Quantitative Chest CT Assessment of COVID-19: Deep-Learning Approach. RSNA, Radiology: Cardiothoracic Imaging. 2020;2(2): e200075.
Lessmann N, Sánchez C, Beenen L, et al. Automated Assessment of CO-RADS and Chest CT Severity Scores in Patients with Suspected COVID-19 Using Artificial Intelligence. Radiology. [Internet] 2020 [consultado 2020]. Disponible en: https://pubs.rsna.org/doi/pdf/10.1148/ radiol.2020202439
Matthew D. Li, Thumbavanam N, Gidwani M, et al. Automated Assessment and Tracking of COVID-19 Pulmonary Disease Severity no Chest Radiographs using Convolutional Siamese Neural Networks. Radiology. [Internet] 2020 [consultado 2020]. Disponible en: https://doi.org/10.1148/ ryai.2020200079