2020, Número 5
<< Anterior Siguiente >>
Rev Fac Med UNAM 2020; 63 (5)
Las funciones metabólicas, endocrinas y reguladoras de la expresión genética del lactato
Matus-Ortega G, Romero-Aguilar L, Luqueño-Bocardo OI, Hernández-Morfín K, Guerra-Sánchez G, Matus-Ortega M, Martínez-Montes F, Pardo-Vázquez JP
Idioma: Español
Referencias bibliográficas: 69
Paginas: 7-17
Archivo PDF: 2323.78 Kb.
RESUMEN
El lactato se considera un metabolito de desecho que se
produce durante la fatiga muscular. En contraste con esta
visión simplista, en este trabajo se proporcionan evidencias
de las múltiples y complejas funciones de este metabolito. Se
muestra que: 1) el lactato es el producto final de la glucólisis,
independientemente de la concentración de oxígeno en el
medio en el que se encuentren las células; 2) el lactato forma
parte de 2 tipos de lanzadera, una que funciona en el espacio
intermembranal de la mitocondria, y otra intercelular, que
se encarga de alimentar con lactato a ciertos tipos celulares,
como las neuronas o el músculo cardiaco; 3) en los espermatozoides,
el lactato se transporta directamente a la matriz
mitocondrial y allí se oxida para producir piruvato y NADH; 4)
en el hígado, el lactato participa en la oxidación del etanol
a través de la generación de peróxido de hidrógeno; 5) que
dependiendo de la estirpe celular, el lactato puede funcionar
como agente antiinflamatorio (endocrino) o regulador de la
expresión génica.
REFERENCIAS (EN ESTE ARTÍCULO)
Brooks GA. The Science and Translation of Lactate Shuttle Theory. Cell metabolism. 2018 Apr 3;27(4):757-85. doi: 10.1016/j.cmet.2018.03.008.
Kane DA. Lactate oxidation at the mitochondria: a lactate- malate-aspartate shuttle at work. Frontiers in neuroscience. 2014;8:366. doi: 10.3389/fnins.2014.00366.
Martínez-Reyes I, Chandel NS. Waste Not, Want Not: Lactate Oxidation Fuels the TCA Cycle. Cell metabolism. 2017 Dec 5;26(6):803-4. doi: 10.1016/j.cmet.2017.11.005.
Hakala MT, Glaid AJ, Schwert GW. Lactic dehydrogenase. II. Variation of kinetic and equilibrium constants with temperature. The Journal of biological chemistry. 1956 Jul;221(1):191-209.
Lauritzen KH, Morland C, Puchades M, Holm-Hansen S, Hagelin EM, Lauritzen F, et al. Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism. Cerebral cortex. 2014 Oct;24(10):2784-95. doi: 10.1093/cercor/bht136.
Control of Glycolysis and Glycogen Metabolism. Comprehensive Physiology.
Liaw KY, Wei TC, Hsu SC, Lin JK. Effect of severe injury and critical illness on high-energy phosphates in human liver and muscle. The Journal of trauma. 1985 Jul;25(7):628-33.
Reinstrup P, Stahl N, Mellergard P, Uski T, Ungerstedt U, Nordstrom CH. Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery. 2000 Sep;47(3):701-9; discussion 9-10.
Sahlin K, Harris RC, Nylind B, Hultman E. Lactate content and pH in muscle obtained after dynamic exercise. Pflugers Archiv: European journal of physiology. 1976 Dec 28;367(2):143-9.
Vespa P, Bergsneider M, Hattori N, Wu HM, Huang SC, Martin NA, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism. 2005 Jun;25(6):763-74. doi: 10.1038/sj.jcbfm. 9600073.
Sahuquillo J, Merino MA, Sánchez-Guerrero A, Arikan F, Vidal-Jorge M, Martínez-Valverde T, et al. Lactate and the lactate-to-pyruvate molar ratio cannot be used as independent biomarkers for monitoring brain energetic metabolism: a microdialysis study in patients with traumatic brain injuries. PloS one. 2014;9(7):e102540. doi: 10.1371/journal. pone.0102540.
van Hall G, Stromstad M, Rasmussen P, Jans O, Zaar M, Gam C, et al. Blood lactate is an important energy source for the human brain. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism. 2009 Jun;29(6):1121-9. doi: 10.1038/jcbfm.2009.35.
Brooks GA. Cell-cell and intracellular lactate shuttles. The Journal of physiology. 2009 Dec 1;587(Pt 23):5591-600. doi: 10.1113/jphysiol.2009.178350.
Jobsis FF, Stainsby WN. Oxidation of NADH during contractions of circulated mammalian skeletal muscle. Respiration physiology. 1968 May;4(3):292-300.
Vega C, Poitry-Yamate CL, Jirounek P, Tsacopoulos M, Coles JA. Lactate is released and taken up by isolated rabbit vagus nerve during aerobic metabolism. Journal of neurochemistry. 1998 Jul;71(1):330-7.
Richardson RS, Noyszewski EA, Leigh JS, Wagner PD. Lactate efflux from exercising human skeletal muscle: role of intracellular PO2. Journal of applied physiology. 1998 Aug;85(2):627-34. doi: 10.1152/jappl.1998.85.2.627.
Nalos M, Leverve X, Huang S, Weisbrodt L, Parkin R, Seppelt I, et al. Half-molar sodium lactate infusion improves cardiac performance in acute heart failure: a pilot randomised controlled clinical trial. Critical care. 2014 Mar 25;18(2):R48. doi: 10.1186/cc13793.
Brooks GA, Martin NA. Cerebral metabolism following traumatic brain injury: new discoveries with implications for treatment. Frontiers in neuroscience. 2014;8:408. doi: 10.3389/fnins.2014.00408.
Duburcq T, Favory R, Mathieu D, Hubert T, Mangalaboyi J, Gmyr V, et al. Hypertonic sodium lactate improves fluid balance and hemodynamics in porcine endotoxic shock. Critical care. 2014 Aug 14;18(4):467 doi: 10.1186/s13054- 014-0467-3.
Nolt B, Tu F, Wang X, Ha T, Winter R, Williams DL, et al. Lactate and Immunosuppression in Sepsis. Shock. 2018 Feb;49(2):120-5. doi: 10.1097/SHK.0000000000000958.
Marques NR, Ford BJ, Khan MN, Kinsky M, Deyo DJ, Mileski WJ, et al. Automated closed-loop resuscitation of multiple hemorrhages: a comparison between fuzzy logic and decision table controllers in a sheep model. Disaster and military medicine. 2017;3:1. doi: 10.1186/s40696-016- 0029-0.
Brooks GA. Mammalian fuel utilization during sustained exercise. Comparative biochemistry and physiology Part B, Biochemistry & molecular biology. 1998 May;120(1):89-107.
Brown MA, Brooks GA. Trans-stimulation of lactate trans- port from rat sarcolemmal membrane vesicles. Archives of biochemistry and biophysics. 1994 Aug 15;313(1):22-8. doi: 10.1006/abbi.1994.1353.
Elustondo PA, White AE, Hughes ME, Brebner K, Pavlov E, Kane DA. Physical and functional association of lactate dehydrogenase (LDH) with skeletal muscle mitochondria. The Journal of biological chemistry. 2013 Aug 30;288(35):25309-17. doi: 10.1074/jbc.M113.476648.
Pellerin L, Magistretti PJ. Sweet sixteen for ANLS. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism. 2012 Jul;32(7):1152-66. doi: 10.1038/jcbfm. 2011.149.
Pellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, et al. Evidence supporting the existence of an activity- dependent astrocyte-neuron lactate shuttle. Developmental neuroscience. 1998;20(4-5):291-9. doi: 10.1159/000017324.
Neves A, Costalat R, Pellerin L. Determinants of brain cell metabolic phenotypes and energy substrate utilization unraveled with a modeling approach. PLoS computational biology. 2012;8(9):e1002686. doi: 10.1371/journal. pcbi.1002686.
Kauppinen RA, Sihra TS, Nicholls DG. Aminooxyacetic acid inhibits the malate-aspartate shuttle in isolated nerve terminals and prevents the mitochondria from utilizing glycolytic substrates. Biochimica et biophysica acta. 1987 Sep 14;930(2):173-8.
Contreras L, Satrustegui J. Calcium signaling in brain mitochondria: interplay of malate aspartate NADH shuttle and calcium uniporter/mitochondrial dehydrogenase pathways. The Journal of biological chemistry. 2009 Mar 13;284(11):7091-9. doi: 10.1074/jbc.M808066200.
Gellerich FN, Gizatullina Z, Trumbekaite S, Korzeniewski B, Gaynutdinov T, Seppet E, et al. Cytosolic Ca2+ regulates the energization of isolated brain mitochondria by formation of pyruvate through the malate-aspartate shuttle. The Biochemical journal. 2012 May 1;443(3):747-55. doi: 10.1042/BJ20110765.
Bergman BC, Tsvetkova T, Lowes B, Wolfel EE. Myocardial glucose and lactate metabolism during rest and atrial pacing in humans. The Journal of physiology. 2009 May 1;587(Pt 9):2087-99. doi: 10.1113/jphysiol.2008.168286.
Gertz EW, Wisneski JA, Stanley WC, Neese RA. Myocardial substrate utilization during exercise in humans. Dual carbon-labeled carbohydrate isotope experiments. The Journal of clinical investigation. 1988 Dec;82(6):2017-25. doi: 10.1172/JCI113822.
Woerle HJ, Meyer C, Dostou JM, Gosmanov NR, Islam N, Popa E, et al. Pathways for glucose disposal after meal ingestion in humans. American journal of physiology Endocrinology and metabolism. 2003 Apr;284(4):E716-25. doi: 10.1152/ajpendo.00365.2002.
Emhoff CA, Messonnier LA, Horning MA, Fattor JA, Carlson TJ, Brooks GA. Direct and indirect lactate oxidation in trained and untrained men. Journal of applied physiology. 2013 Sep;115(6):829-38. doi: 10.1152/japplphysiol. 00538.2013.
Storey BT, Kayne FJ. Energy metabolism of spermatozoa. VI. Direct intramitochondrial lactate oxidation by rabbit sperm mitochondria. Biology of reproduction. 1977 May;16(4):549-56.
Halangk W, Bohnensack R, Frank K, Kunz W. Effect of various substrates on mitochondrial and cellular energy state of intact spermatozoa. Biomedica biochimica acta. 1985;44(3):411-20.
Jones AR. Metabolism of lactate by mature boar spermatozoa. Reproduction, fertility, and development. 1997;9(2):227-32.
De Bari L, Atlante A, Valenti D, Passarella S. Partial reconstruction of in vitro gluconeogenesis arising from mitochondrial l-lactate uptake/metabolism and oxaloacetate export via novel L-lactate translocators. The Biochemical journal. 2004 May 15;380(Pt 1):231-42. doi: 10.1042/BJ20031981.
Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. Journal of applied physiology: respiratory, environmental and exercise physiology. 1984 Apr;56(4):831-8. doi: 10.1152/ jappl.1984.56.4.831.
Le Floch R, Chiche J, Marchiq I, Naiken T, Ilc K, Murray CM, et al. CD147 subunit of lactate/H+ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors. Proceedings of the National Academy of Sciences of the United States of America. 2011 Oct 4;108(40):16663-8. doi: 10.1073/pnas.1106123108.
Gertz EW, Wisneski JA, Neese R, Bristow JD, Searle GL, Hanlon JT. Myocardial lactate metabolism: evidence of lactate release during net chemical extraction in man. Circulation. 1981 Jun;63(6):1273-9.
Burgos C, Maldonado C, Gerez de Burgos NM, Aoki A, Blanco A. Intracellular localization of the testicular and sperm-specific lactate dehydrogenase isozyme C4 in mice. Biology of reproduction. 1995 Jul;53(1):84-92.
Ferramosca A, Zara V. Bioenergetics of mammalian sperm capacitation. BioMed research international. 2014;2014:902953. doi: 10.1155/2014/902953.
Riveros-Rosas H, Julian-Sanchez A, Pina E. Enzymology of ethanol and acetaldehyde metabolism in mammals. Archives of medical research. 1997 Winter;28(4):453-71.
Villalobos-García D, Hernandez-Munoz R. Lactate-stimulated ethanol oxidation: Revisiting an old hypothesis. Biochemical pharmacology. 2019 Apr 11;164:283-8. doi: 10.1016/j.bcp.2019.04.012.
Chan L, Slater J, Hasbargen J, Herndon DN, Veech RL, Wolf S. Neurocardiac toxicity of racemic D,L-lactate fluids. Integrative physiological and behavioral science: the official journal of the Pavlovian Society. 1994 Oct-Dec;29(4):383-94.
Boysen SR, Dorval P. Effects of rapid intravenous 100% L-isomer lactated Ringer’s administration on plasma lactate concentrations in healthy dogs. Journal of veterinary emergency and critical care. 2014 Sep-Oct;24(5):571-7. doi: 10.1111/vec.12213.
de-Madaria E, Herrera-Marante I, Gonzalez-Camacho V, Bonjoch L, Quesada-Vazquez N, Almenta-Saavedra I, et al. Fluid resuscitation with lactated Ringer’s solution vs normal saline in acute pancreatitis: A triple-blind, randomized, controlled trial. United European gastroenterology journal. 2018 Feb;6(1):63-72. doi: 10.1177/2050640617707864.
Ahmed K, Tunaru S, Tang C, Muller M, Gille A, Sassmann A, et al. An autocrine lactate loop mediates insulin- dependent inhibition of lipolysis through GPR81. Cell metabolism. 2010 Apr 7;11(4):311-9. doi: 10.1016/j. cmet.2010.02.012.
Bergersen LH. Lactate transport and signaling in the brain: potential therapeutic targets and roles in body-brain interaction. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2015 Feb;35(2):176-85. doi: 10.1038/jcbfm.2014.206.
Hoque R, Farooq A, Ghani A, Gorelick F, Mehal WZ. Lactate reduces liver and pancreatic injury in Toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity. Gastroenterology. 2014 Jun;146(7):1763-74. doi: 10.1053/j. gastro.2014.03.014.
Hashimoto T, Hussien R, Oommen S, Gohil K, Brooks GA. Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2007 Aug;21(10):2602-12. doi: 10.1096/fj.07-8174com.
Semenza GL. HIF-1: upstream and downstream of cancer metabolism. Current opinion in genetics & development. 2010 Feb;20(1):51-6. doi: 10.1016/j.gde.2009.10.009.
Martinez-Outschoorn UE, Prisco M, Ertel A, Tsirigos A, Lin Z, Pavlides S, et al. Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics. Cell cycle. 2011 Apr 15;10(8):1271-86. doi: 10.4161/cc.10.8.15330.
De Saedeleer CJ, Copetti T, Porporato PE, Verrax J, Feron O, Sonveaux P. Lactate activates HIF-1 in oxidative but not in Warburg-phenotype human tumor cells. PloS one. 2012;7(10):e46571. doi: 10.1371/journal.pone.0046571.
Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proceedings of the National Academy of Sciences of the United States of America. 2008 Dec 2;105(48):18782-7. doi: 10.1073/pnas.0810199105.
Jiang P, Du W, Yang X. p53 and regulation of tumor metabolism. Journal of carcinogenesis. 2013 Nov 6;12:21 doi: 10.4103/1477-3163.122760.
Webb BA, Chimenti M, Jacobson MP, Barber DL. Dysregulated pH: a perfect storm for cancer progression. Nature reviews Cancer. 2011 Aug 11;11(9):671-7. doi: 10.1038/ nrc3110.
Justus CR, Dong L, Yang LV. Acidic tumor microenvironment and pH-sensing G protein-coupled receptors. Frontiers in physiology. 2013 Dec 5;4:354. doi: 10.3389/ fphys.2013.00354.
Granja S, Tavares-Valente D, Queiros O, Baltazar F. Value of pH regulators in the diagnosis, prognosis and treatment of cancer. Seminars in cancer biology. 2017 Apr;43:17-34. doi: 10.1016/j.semcancer.2016.12.003.
Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, et al. Glucose feeds the TCA cycle via circulating lactate. Nature. 2017 Nov 2;551(7678):115-8. doi: 10.1038/ nature24057.
Trabold O, Wagner S, Wicke C, Scheuenstuhl H, Hussain MZ, Rosen N, et al. Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing. Wound repair and regeneration: official publication of the Wound Healing Society [and] the European Tissue Repair Society. 2003 Nov-Dec;11(6):504-9.
Kumar VB, Viji RI, Kiran MS, Sudhakaran PR. Endothelial cell response to lactate: implication of PAR modification of VEGF. Journal of cellular physiology. 2007 May;211(2):477-85. doi: 10.1002/jcp.20955.
Hunt TK, Aslam R, Hussain Z, Beckert S. Lactate, with oxygen, incites angiogenesis. Advances in experimental medicine and biology. 2008;614:73-80. doi: 10.1007/978- 0-387-74911-2_9.
Baumann F, Leukel P, Doerfelt A, Beier CP, Dettmer K, Oefner PJ, et al. Lactate promotes glioma migration by TGF-beta2-dependent regulation of matrix metalloproteinase- 2. Neuro-oncology. 2009 Aug;11(4):368-80. doi: 10.1215/15228517-2008-106.
Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer cell. 2006 Jun;9(6):425-34. doi: 10.1016/j.ccr.2006.04.023.
Draoui N, Feron O. Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments. Disease models & mechanisms. 2011 Nov;4(6):727-32. doi: 10.1242/dmm.007724.
Doherty JR, Yang C, Scott KE, Cameron MD, Fallahi M, Li W, et al. Blocking lactate export by inhibiting the Myc target MCT1 Disables glycolysis and glutathione synthesis. Cancer Res. 2014 Feb 1;74(3):908-20. doi: 10.1158/0008- 5472.CAN-13-2034.
Poso AR. Monocarboxylate transporters and lactate metabolism in equine athletes: a review. Acta Vet Scand. 2002; 43(2):63-74. doi: 10.1186/1751-0147-43-63.