2020, Number 2
<< Back Next >>
Odovtos-Int J Dent Sc 2020; 22 (2)
Effects of Different Storage Conditions on Mechanical Properties of CAD/CAM Restorative Materials
Atay A, Sağirkaya E
Language: English
References: 45
Page: 83-96
PDF size: 224.80 Kb.
ABSTRACT
The aim of this study was to evaluate mechanical properties of six new-generation all-ceramic materials for CAD/CAM (Lava Ultimate [LU], VITA Mark II [VM], InCoris TZI [IC], IPS e.max CAD [EM], VITA Suprinity [VS], IPS Empress CAD [EC]) and two different provisional restoration CAD/CAM materials (Telio CAD [TC], Vita CAD-Temp [VC]) after different storage conditions. 36 bar-shaped samples of 4 mm in width and 14 mm in length with 1.2 mm thicknesses were prepared from each material group (N=288). The specimens from each material were kept under three different storage conditions (n=12): under dry conditions at room temperature; 37°C distilled water for 7 days; and 37°C distilled water for 7 days followed by 10,000 thermal cycles. All specimens were subjected to a 3-point flexural test with a crosshead speed of 1.0 mm/min. The specimens were loaded until failure. Twelve fractured specimens after the flexural test from each group were used for the Vickers hardness test (under 300 gf of loading in 15 seconds). The flexural modulus, flexural strength and Vickers hardness values were separately analyzed with two-way analysis of variance, Tukey’s multiple comparison tests at a significance level of p
‹0.05. There were statistically significant differences between materials and storage conditions according to flexural modulus, flexural strength and Vickers hardness values (p
‹0.05). The flexural strength, flexural modulus and Vickers hardness values of LU, VC, TC, VS and IC decreased after water storage followed by thermal cycling (p
‹0.05). The mechanical properties of provisional restoration CAD/CAM materials had showed a significantly decrease after water storage followed by thermal cycles but their mechanical properties were acceptable for fabrication of provisional restorations. The mechanical properties of VM, EC and EM were not affected by different storage conditions whereas IC and VS were affected.
REFERENCES
Lee K. B., Park C. W., Kim K. H., Kwon T. Y. Marginal and internal fit of all-ceramic crowns fabricated with two different CAD/CAM systems. Dent Mater J. 2008; 27 (3): 422-426.
Fasbinder D. J. Computerized technology for restorative dentistry. Am J Dent. 2013; 26 (3): 115-120.
Lauvahutanon S., Takahashi H., Shiozawa M., Iwasaki N., Asakawa Y., Oki M., Finger W. J., Arksornnukit M. Mechanical properties of composite resin blocks for CAD/CAM. Dent Mater J. 2014; 33 (5): 705-710.
Gracis S., Thompson V. P., Ferencz J. L., Silva N. R., Bonfante E. A. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont. 2015; 28 (3): 227-235.
Awada A., Nathanson D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J Prosthet Dent. 2015; 114 (4): 587-593.
Carvalho A. O., Bruzi G., Giannini M., Magne P. Fatigue resistance of CAD/CAM complete crowns with a simplified cementation process. J Prosthet Dent. 2014; 111 (4): 310-317.
Li R. W., Chow T. W., Matinlinna J. P. Ceramic dental biomaterials and CAD/CAM technology: state of the art. J Prosthodont Res. 2014; 58: 208-216.
Höland W., Schweiger M., Frank M., Rheinberger V. A comparison of the microstructure and properties of the IPS Empress 2 and the IPS Empress glass-ceramics. J Biomed Mater Res. 2000; 53 (4): 297-303.
Blackburn C., Rask H., Awada A. Mechanical properties of resin-ceramic CAD-CAM materials after accelerated aging. J Prosthet Dent. 2018; 119 (6): 954-958.
Silva L. H., Lima E., Miranda R. B. P., Favero S. S., Lohbauer U., Cesar P. F. Dental ceramics: a review of new materials and processing methods. Braz Oral Res. 2017; 31: e58; 133-146.
Sonmez N., Gultekin P., Turp V., Akgungor G., Sen D., Mijiritsky E. Evaluation of five CAD/CAM materials by microstructural characterization and mechanical tests: a comparative in vitro study. BMC Oral Health. 2018; 18 (1): 5.
Zimmermann M., Mehl A., Reich S. New CAD/CAM materials and blocks for chairside procedures. Int J Comp Dent. 2013; 16 (2): 173-181.
de Kok P., Kleverlaan C. J., de Jager N., Kuijs R., Feilzer A. J. Mechanical performance of implant-supported posterior crowns. J Prosthet Dent. 2015; 114 (1): 59-66.
Preis V., Weiser F., Handel G., Rosentritt M. Wear performance of monolithic dental ceramics with different surface treatments. Quintessence Int. 2013; 44 (5): 393-405.
Wendler M., Belli R., Valladaresa D., Petschelt A., Lohbauer U. Chairside CAD/CAM materials. Part 3: Cyclic fatigue parameters and lifetime predictions. Dental Materials 2018; 910-921
Stawarczyk B., Ender A., Trottmann A., Özcan M., Fischer J., Hämmerle C. H. Load-bearing capacity of CAD/CAM milled polymeric three-unit fixed dental prostheses: effect of aging regimens. Clin Oral Investig. 2012; 16 (6): 1669-1677.
Alt V., Hannig M., Wöstmann B., Balkenhol M. Fracture strength of temporary fixed partial dentures: CAD/CAM versus directly fabricated restorations. Dent Mater. 2011; 27 (4): 339-347.
Abdullah A. O., Pollington S., Liu Y. Comparison between direct chairside and digitally fabricated temporary crowns. Dent Mater J. 2018; 37 (6): 957-963.
Fasbinder D. J. Chairside CAD/CAM: an overview of restorative material options. Compend Contin Educ Dent. 2012; 33 (1): 50, 52-58.
Niem T., Youssef N., Wöstmann B. Energy dissipation capacities of CAD-CAM restorative materials: A comparative evaluation of resilience and toughness. J Prosthet Dent. 2019; 121 (1): 101-109.
Anusavice K. J. Phillips' Science of Dental Materials. 11th ed. St. Louis: Missouri, 2003.
Kadiyala K. K., Badisa M. K., Anne G., Anche S. C., Chiramana S., Muvva S. B., Zakkula S., Jyothula R. R. Evaluation of Flexural Strength of Thermocycled Interim Resin Materials Used in Prosthetic Rehabilitation- An In-vitro Study. J Clin Diagn Res. 2016; 10 (9): ZC91-ZC95.
Flinn B. D., Raigrodski A. J., Mancl L. A., Toivola R., Kuykendall T. Influence of aging on flexural strength of translucent zirconia for monolithic restorations. J Prosthet Dent. 2017; 117 (2): 303-309.
Lawson N. C., Bansal R., Burgess J. O. Wear, strength, modulus and hardness of CAD/CAM restorative materials. Dent Mater. 2016; 32 (11): 275-283.
Rayyan M. M., Aboushelib M., Sayed N. M., Ibrahim A., Jimbo R. Comparison of interim restorations fabricatedby CAD/CAM with those fabricated manually. J Prosthet Dent. 2015; 114 (3): 414-419.
Peñate L., Basilio J., Roig M., Mercadé M. Comparative study of interim materials for direct fixed dentalprostheses and their fabrication with CAD/CAM technique. J Prosthet Dent. 2015; 114 (2): 248-253.
Yao J., Li J., Wang Y., Huang H. Comparison of the flexural strength and marginal accuracy of traditional and CAD/CAM interim materials before and after thermal cycling. J Prosthet Dent. 2014; 112 (3): 649-657.
Coldea A., Swain M. V., Thiel N. In-vitro strength degradation of dental ceramics and novel PICN material by sharp indentation. J Mech Behav Biomed Mater. 2013; 26: 34-42.
Wendler M., Belli R., Petschelt A., Mevec D., Harrer W., Lube T., Danzer R., Lohbauer U. Chairside CAD/CAM materials. Part 2: Flexural strength testing. Dent Mater. 2017; 33 (1): 99-109.
Elsaka S. E., Elnaghy A. M. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic. Dent Mater. 2016; 32 (7): 908-914.
Al-Harbi F. A., Ayad N. M., ArRejaie A. S., Bahgat H. A., Baba N. Z. Effect of Aging Regimens on Resin Nanoceramic Chairside CAD/CAM Material. J Prosthodont. 2015; 26 (5): 432-439.
ISO 6872:2008. Dentistry-Ceramic materials.
Barclay CW, Boyle EL, Williams R, Marquis PM. The effect of thermocycling on five adhesive luting cements. J Oral Rehabil. 2002; 29 (6): 546-552.
De Munck J., Van Landuyt K., Peumans M., Poitevin A., Lambrechts P., Braem M., Van Meerbeek B. A critical review of the durability of adhesion to tooth tissue: methods and results. J Dent Res. 2005; 84 (2): 118-132.
Thorton I and Ruse ND. Charecterization of resin nano ceramic resin composite and lithium disilicate blocks. J Dent Res. 2014; 93.
Ferracane J. L., Berge H. X., Condon J. R. In vitro aging of dental composites in water-Effect of degree of conversion, filler volume, and filler/matrix coupling. J Biomed Mater Res. 1998; 42 (3): 465-472.
Rimondini L., Cerroni L., Carrasi L., Torricelli P. Bacterial colonization of zirconia surfaces: An in vitro and in vivo study. Int J Oral Maxillofac Implant 2002; 17: 793-7.
Stawarczyk B., Liebermann A., Eichberger M., Güth J. F. Evaluation of mechanical and optical behaviour of current esthetic dental restorative CAD/CAM composites. J Mech Behaviour Biomed Mater. 2015; 55: 1-11.
Qin F., Zheng S., Luo Z., Li Y., Guo L., Zhao Y., Fu Q. Evaluation of machinability and flexural strength of a novel dental machinable glass-ceramic. J Dent. 2009; 37 (10): 776-780.
ISO 10477:2004. Dentistry-Polymer-based crown and bridges materials.
Belli R., Wendler M., de Ligny D., Cicconi M. R., Petschelt A., Peterlik H., Lohbauer U. Chairside CAD/CAM materials. Part 1: Measurement of elastic constants and microstructural characterization. Dent Mater. 2017; 33 (1): 84-98.
Bettencourt A. F., Neves C. B., de Almeida M. S., Pinheiro L. M., Oliveira S. A., Lopes L. P., Castro M. F. Biodegradation of acrylic based resins: A review. Dent Mater. 2010; 26 (5): 171-180.
Swab J. J. Low temperature degradation of Y-TZP materials. Journal of Materials Science 1991; 26: 6706-14.
Albero A., Pascual A., Camps I., Grau-Benitez M. Comparative characterization of a novel cad-cam polymer-infiltrated-ceramic-network. J Clin Exp Dent. 2015; 7 (4): 495-500.
Albakry M., Guazzato M., Swain M. V. Biaxial flexural strength and microstructure changes of two recycled pressable glass ceramics. J Prosthodont. 2004; 13 (3): 141-149. Attribution