2019, Number 3
<< Back Next >>
Rev Hematol Mex 2019; 20 (3)
The crossing of iron in pregnancy: a way to its deficiency
Rosas-González EA, Álvarez-Altamirano K, Bejarano-Rosales MP, Fuchs-Tarlovsky V, Santoyo-Sánchez A, Ramos-Peñafiel CO
Language: Spanish
References: 40
Page: 224-230
PDF size: 656.51 Kb.
ABSTRACT
The iron is one of the most abundant elements on Earth, in humans it participates in
many biological processes. During pregnancy the iron requirement is increased, and
the mother’s placenta is the way through to provide the supply to the fetus. Worldwide,
40% of pregnant women suffer anemia. Therefore, their maternal-fetal metabolism
plays an important part in the understanding of the pathophysiology of the disease
and possible therapy. The low intake, predisposition and inadequate supplementation
are factors that intervene in the high prevalence of anemia and iron deficiency in this
stage of life. In this review article, we will describe the epidemiology, metabolism and
main mechanisms by which the deficiency of the most important metal of biological
systems is led: iron.
REFERENCES
Geissler C, Singh M. Iron, meat and health. Nutrients 2011;3(3):283-316.
Ganz T. Systemic iron homeostasis. Physiol Rev 2013;93(4):1721-41.
OMS. Administración diaria de suplementos de hierro y ácido fólico durante el embarazo. Biblioteca electrónica de documentación científica sobre medidas nutricionales (eLENA).
Collings R, Harvey LJ, Hooper L, Hurst R, Brown TJ, Ansett J, et al. The absorption of iron from whole diets: a systematic review. Am J Clin Nutr 2013;98(1):65-81.
Stevens GA, Finucane MM, De-Regil LM, Paciorek CJ, Flaxman SR, Branca F, et al. Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995–2011: a systematic analysis of populationrepresentative data. Lancet Glob Heal 2013;1(1):e16-25.
McLean E, Cogswell M, Egli I, Wojdyla D, de Benoist B. Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993-2005. Vol. 12, Public Health Nutr 2009.
Levy T, Hernández S, De la Cruz V. Anemia en mujeres en edad reproductiva. México; 2012.
Beard JL. Why iron deficiency is important in infant development. J Nutr 2008;138(12):2534-6.
Lopez A, Cacoub P, Macdougall IC, Peyrin-Biroulet L. Iron deficiency anaemia. Lancet (London, England) 27 de febrero de 2016;387(10021):907-16.
Tapiero H, Gaté L, Tew KD. Iron: Deficiencies and requirements. Biomed Pharmacother 2001;55(6):324-32.
Preziosi P, Prual A, Galan P, Daouda H, Boureima H, Hercberg S. Effect of iron supplementation on the iron status of pregnant women: consequences for newborns. Am J Clin Nutr 1997;66(5):1178-82.
Soares NN, Mattar R, Camano L, Torloni MR. Iron deficiency anemia and iron stores in adult and adolescent women in pregnancy. Acta Obstet Gynecol Scand 2010;89(3):343-9.
Akinlaja O. Hematological changes in pregnancy. The preparation for intrapartum blood loss. Obstet Gynecol Int J 2016;Volume 4(Issue 3):5.
Pritchard JA. Changes in the blood volume during pregnancy and delivery. Anesthesiology 1965;26:393-9.
Widdowson EM, Spray CM. Chemical development in utero. Arch Dis Child 1951;26(127):205-14.
Finch CA, Huebers HA, Miller LR, Josephson BM, Shepard TH, Mackler B. Fetal iron balance in the rat. Am J Clin Nutr 1983;37(6):910-7.
Breymann C. Iron deficiency anemia in pregnancy. Semin Hematol 2015;52(4):339-47.
Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. En: Arsenic, Boron, Nickel, Silicon, and Vanadium. Washington, D.C.: Institute of Medicine; 2001;290-393.
Abdizadeh H, Atilgan AR, Atilgan C. Detailed molecular dynamics simulations of human transferrin provide insights into iron release dynamics at serum and endosomal pH. J Biol Inorg Chem 2015;20(4):705-18.
van Dijk JP, van der Zande FG, Kroos MJ, Starreveld JS, van Eijk HG. Number and affinity of transferrin-receptors at the placental microvillous plasma membrane of the guinea pig: influence of gestational age and degree of transferrin glycan chain complexity. J Dev Physiol 1993;19(5):221-6.
Gambling L, Lang C, McArdle HJ. Fetal regulation of iron transport during pregnancy. Am J Clin Nutr 2011;94(6).
Paterson S, Armstrong NJ, Iacopetta BJ, McArdle HJ, Morgan EH. Intravesicular pH and iron uptake by immature erythroid cells. J Cell Physiol 1984;120(2):225-32.
Harris ED. New insights into placental iron transport. Nutr Rev 1992;50(11):329-31.
Cetin I, Berti C, Mandò C, Parisi F. Placental iron transport and maternal absorption. Ann Nutr Metab 2011;59(1):55-8.
Corrales-Agudelo V, Parra-Sosa BE, Burgos-Herrera LC. Proteínas relacionadas con el metabolismo del hierro corporal. Perspect Nutr Humana 2016;18(1):95-116.
Cao C, Fleming MD. The placenta: the forgotten essential organ of iron transport. Nutr Rev 2016;74(7):421-31.
Best CM, Pressman EK, Cao C, Cooper E, Guillet R, Yost OL, et al. Maternal iron status during pregnancy compared with neonatal iron status better predicts placental iron transporter expression in humans. FASEB J 2016;30(10):3541-50.
Cao C, Pressman EK, Cooper EM, Guillet R, Westerman M, O’Brien KO. Placental heme receptor LRP1 correlates with the heme exporter FLVCR1 and neonatal iron status. Reproduction 2014;148(3):295-302.
Fisher AL, Nemeth E. Iron homeostasis during pregnancy. Am J Clin Nutr 2017;106(C):1567S-1574S.
Bah A, Pasricha S, Jallow MW, Sise EA, Wegmuller R, et al. Serum hepcidin concentrations decline during pregnancy and may identify iron deficiency: analysis of a longitudinal pregnancy cohort in the Gambia. J Nutr 2017;1131-7.
Brunacci F, Rocha VS, De Carli E, Espósito BP, Ruano R, Colli C. Increased serum iron in preeclamptic women is likely due to low hepcidin levels. Nutr Res 2018;53:32-9.
Cardaropoli S, Todros T, Nuzzo AM, Rolfo A. Maternal serum levels and placental expression of hepcidin in preeclampsia. Pregnancy Hypertens 2018;11(December 2017):47-53.
Wang Z, Fan HB, Yang WW, Mao XD, Xu SH, Ma XP, et al. Correlation between plasma ferritin level and gestational diabetes mellitus and its impact on fetal macrosomia. J Diabetes Investig 2018;1-6.
Balesaria S, Hanif R, Salama MF, Raja K, Bayele HK, McArdle H, et al. Fetal iron levels are regulated by maternal and fetal Hfe genotype and dietary iron. Haematologica 2012;97(5):661-9.
Kocyłowski R, Lewicka I, Grzesiak M, Gaj Z, Sobańska A, Poznaniak J, et al. Assessment of dietary intake and mineral status in pregnant women. Arch Gynecol Obstet 2018;1433-40.
Liu J, Chen D, Li M, Hua Y. Increased serum iron levels in pregnant women with preeclampsia: a meta-analysis of observational studies. J Obstet Gynaecol (Lahore) 2018;0(0):1-6.
Cook JD, Reddy MB. Efficacy of weekly compared with daily iron supplementation. Am J Clin Nutr 1995;62(1):117-20.
Pérez Lizaur A, Palacios González B, Castro Becerra A FGI. Sistema Mexicano de Alimentos Equivalentes. 4a ed. México: Fomento de Nutrición y Salud; 2014. 4a ed. Fomento de Nutrición y Salud, editor. México; 2014. 160 p.
Stoffel NU, Cercamondi CI, Brittenham G, Zeder C, Geurts-Moespot AJ, Swinkels DW, et al. Iron absorption from oral iron supplements given on consecutive versus alternate days and as single morning doses versus twicedaily split dosing in iron-depleted women: two openlabel, randomised controlled trials. Lancet Haematol 2017;4(11):e524-33.
Mishra V, Gandhi K, Roy P, Hokabaj S, Shah KN. Role of intravenous ferric carboxy-maltose in pregnant women with iron deficiency anaemia. J Nepal Health Res Counc 2017;15(2):96-9.