2019, Número 3
<< Anterior Siguiente >>
Rev Hematol Mex 2019; 20 (3)
La travesía del hierro en el embarazo: una vía para su deficiencia
Rosas-González EA, Álvarez-Altamirano K, Bejarano-Rosales MP, Fuchs-Tarlovsky V, Santoyo-Sánchez A, Ramos-Peñafiel CO
Idioma: Español
Referencias bibliográficas: 40
Paginas: 224-230
Archivo PDF: 656.51 Kb.
RESUMEN
El hierro es uno de los elementos más abundantes en la tierra, en el ser humano
participa en muchos procesos biológicos. En el embarazo el requerimiento de
hierro aumenta y es por medio de la placenta que la madre abastece al feto. En
todo el mundo 40% de las mujeres embarazadas padecen anemia, por lo que su
metabolismo materno-fetal juega una parte importante en el entendimiento de la
fisiopatología de la enfermedad y posible terapéutica. La baja ingesta, predisposición
y la inadecuada administración complementaria son factores que intervienen en
la alta prevalencia de anemia y deficiencia de hierro en esta etapa de la vida. En
este artículo de revisión se describe la epidemiologia, metabolismo y principales
mecanismos por los que se conduce a la deficiencia del metal más importante de
los sistemas biológicos: el hierro.
REFERENCIAS (EN ESTE ARTÍCULO)
Geissler C, Singh M. Iron, meat and health. Nutrients 2011;3(3):283-316.
Ganz T. Systemic iron homeostasis. Physiol Rev 2013;93(4):1721-41.
OMS. Administración diaria de suplementos de hierro y ácido fólico durante el embarazo. Biblioteca electrónica de documentación científica sobre medidas nutricionales (eLENA).
Collings R, Harvey LJ, Hooper L, Hurst R, Brown TJ, Ansett J, et al. The absorption of iron from whole diets: a systematic review. Am J Clin Nutr 2013;98(1):65-81.
Stevens GA, Finucane MM, De-Regil LM, Paciorek CJ, Flaxman SR, Branca F, et al. Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995–2011: a systematic analysis of populationrepresentative data. Lancet Glob Heal 2013;1(1):e16-25.
McLean E, Cogswell M, Egli I, Wojdyla D, de Benoist B. Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993-2005. Vol. 12, Public Health Nutr 2009.
Levy T, Hernández S, De la Cruz V. Anemia en mujeres en edad reproductiva. México; 2012.
Beard JL. Why iron deficiency is important in infant development. J Nutr 2008;138(12):2534-6.
Lopez A, Cacoub P, Macdougall IC, Peyrin-Biroulet L. Iron deficiency anaemia. Lancet (London, England) 27 de febrero de 2016;387(10021):907-16.
Tapiero H, Gaté L, Tew KD. Iron: Deficiencies and requirements. Biomed Pharmacother 2001;55(6):324-32.
Preziosi P, Prual A, Galan P, Daouda H, Boureima H, Hercberg S. Effect of iron supplementation on the iron status of pregnant women: consequences for newborns. Am J Clin Nutr 1997;66(5):1178-82.
Soares NN, Mattar R, Camano L, Torloni MR. Iron deficiency anemia and iron stores in adult and adolescent women in pregnancy. Acta Obstet Gynecol Scand 2010;89(3):343-9.
Akinlaja O. Hematological changes in pregnancy. The preparation for intrapartum blood loss. Obstet Gynecol Int J 2016;Volume 4(Issue 3):5.
Pritchard JA. Changes in the blood volume during pregnancy and delivery. Anesthesiology 1965;26:393-9.
Widdowson EM, Spray CM. Chemical development in utero. Arch Dis Child 1951;26(127):205-14.
Finch CA, Huebers HA, Miller LR, Josephson BM, Shepard TH, Mackler B. Fetal iron balance in the rat. Am J Clin Nutr 1983;37(6):910-7.
Breymann C. Iron deficiency anemia in pregnancy. Semin Hematol 2015;52(4):339-47.
Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. En: Arsenic, Boron, Nickel, Silicon, and Vanadium. Washington, D.C.: Institute of Medicine; 2001;290-393.
Abdizadeh H, Atilgan AR, Atilgan C. Detailed molecular dynamics simulations of human transferrin provide insights into iron release dynamics at serum and endosomal pH. J Biol Inorg Chem 2015;20(4):705-18.
van Dijk JP, van der Zande FG, Kroos MJ, Starreveld JS, van Eijk HG. Number and affinity of transferrin-receptors at the placental microvillous plasma membrane of the guinea pig: influence of gestational age and degree of transferrin glycan chain complexity. J Dev Physiol 1993;19(5):221-6.
Gambling L, Lang C, McArdle HJ. Fetal regulation of iron transport during pregnancy. Am J Clin Nutr 2011;94(6).
Paterson S, Armstrong NJ, Iacopetta BJ, McArdle HJ, Morgan EH. Intravesicular pH and iron uptake by immature erythroid cells. J Cell Physiol 1984;120(2):225-32.
Harris ED. New insights into placental iron transport. Nutr Rev 1992;50(11):329-31.
Cetin I, Berti C, Mandò C, Parisi F. Placental iron transport and maternal absorption. Ann Nutr Metab 2011;59(1):55-8.
Corrales-Agudelo V, Parra-Sosa BE, Burgos-Herrera LC. Proteínas relacionadas con el metabolismo del hierro corporal. Perspect Nutr Humana 2016;18(1):95-116.
Cao C, Fleming MD. The placenta: the forgotten essential organ of iron transport. Nutr Rev 2016;74(7):421-31.
Best CM, Pressman EK, Cao C, Cooper E, Guillet R, Yost OL, et al. Maternal iron status during pregnancy compared with neonatal iron status better predicts placental iron transporter expression in humans. FASEB J 2016;30(10):3541-50.
Cao C, Pressman EK, Cooper EM, Guillet R, Westerman M, O’Brien KO. Placental heme receptor LRP1 correlates with the heme exporter FLVCR1 and neonatal iron status. Reproduction 2014;148(3):295-302.
Fisher AL, Nemeth E. Iron homeostasis during pregnancy. Am J Clin Nutr 2017;106(C):1567S-1574S.
Bah A, Pasricha S, Jallow MW, Sise EA, Wegmuller R, et al. Serum hepcidin concentrations decline during pregnancy and may identify iron deficiency: analysis of a longitudinal pregnancy cohort in the Gambia. J Nutr 2017;1131-7.
Brunacci F, Rocha VS, De Carli E, Espósito BP, Ruano R, Colli C. Increased serum iron in preeclamptic women is likely due to low hepcidin levels. Nutr Res 2018;53:32-9.
Cardaropoli S, Todros T, Nuzzo AM, Rolfo A. Maternal serum levels and placental expression of hepcidin in preeclampsia. Pregnancy Hypertens 2018;11(December 2017):47-53.
Wang Z, Fan HB, Yang WW, Mao XD, Xu SH, Ma XP, et al. Correlation between plasma ferritin level and gestational diabetes mellitus and its impact on fetal macrosomia. J Diabetes Investig 2018;1-6.
Balesaria S, Hanif R, Salama MF, Raja K, Bayele HK, McArdle H, et al. Fetal iron levels are regulated by maternal and fetal Hfe genotype and dietary iron. Haematologica 2012;97(5):661-9.
Kocyłowski R, Lewicka I, Grzesiak M, Gaj Z, Sobańska A, Poznaniak J, et al. Assessment of dietary intake and mineral status in pregnant women. Arch Gynecol Obstet 2018;1433-40.
Liu J, Chen D, Li M, Hua Y. Increased serum iron levels in pregnant women with preeclampsia: a meta-analysis of observational studies. J Obstet Gynaecol (Lahore) 2018;0(0):1-6.
Cook JD, Reddy MB. Efficacy of weekly compared with daily iron supplementation. Am J Clin Nutr 1995;62(1):117-20.
Pérez Lizaur A, Palacios González B, Castro Becerra A FGI. Sistema Mexicano de Alimentos Equivalentes. 4a ed. México: Fomento de Nutrición y Salud; 2014. 4a ed. Fomento de Nutrición y Salud, editor. México; 2014. 160 p.
Stoffel NU, Cercamondi CI, Brittenham G, Zeder C, Geurts-Moespot AJ, Swinkels DW, et al. Iron absorption from oral iron supplements given on consecutive versus alternate days and as single morning doses versus twicedaily split dosing in iron-depleted women: two openlabel, randomised controlled trials. Lancet Haematol 2017;4(11):e524-33.
Mishra V, Gandhi K, Roy P, Hokabaj S, Shah KN. Role of intravenous ferric carboxy-maltose in pregnant women with iron deficiency anaemia. J Nepal Health Res Counc 2017;15(2):96-9.