2018, Number 38
<< Back Next >>
Salud Quintana Roo 2018; 11 (38)
Cryptic species in Ochelerotatus Taeniorhynchus by barcode disclosure
Chan-Chable RJ, Martínez-Arce A, Mis-Avila PC
Language: Spanish
References: 31
Page: 7-11
PDF size: 1107.04 Kb.
ABSTRACT
Introduction. Ochlerotatus Taeniorhynchus is a mosquito
that inhabits coastal and brackish water swamps. It is widely
distributed in the Americas. This wide distribution may be
interrupted by geographical and environmental factors that may
lead to its speciation.
Objective. To compare specimens of Oc. taeniorhynchus from
Mexico and the United States of America (USA) at the molecular
level (DNA barcoding) to show evidence of the existence of cryptic
species in this species.
Materials and method. The specimens were collected with CDC
light traps baited with carbon dioxide (CO2). Molecular laboratory
work was carried out using standardized protocols. The MEGA
program for the calculation of genetic distances and the Automatic
Barcode Gap Discovery (ABGD) method were used to delimit the
molecular operational taxonomic units (MOTU´s).
Results. The Kimura 2 parameter genetic distance analysis and
the Neighbor-Joining tree showed two well-differentiated clades
of Oc. taeniorhynchus with an average divergence value between
clades greater than 2% (3.1%). On the one hand, the sequences
of the specimens from Mexico were grouped and on the other
hand, the sequences of specimens from the USA. This was also
supported by the ABGD analysis.
Conclusion. The average genetic divergence value of 3.1%
observed between the specimens of Oc. taeniorhynchus from
Mexico and USA indicates that they are cryptic species. It is
recommended to add ecological data and make a fine comparison
of the morphology of the larvae, the exocorion of eggs and the
genitalia of adult males to find the differences that separate them
as species.
REFERENCES
Forattini OP. Entomología Médica. 1ª ed. Sao Paulo, Brasil: Editora da Universidad da Sao Paulo; 1965.
Brault AC, Powers AM, Ortiz D, Estrada-Franco JG, Navarro-Lopez R, Weaver SC. Venezuelna equine encephalitis emergence: Enhance vector infection from a single amino acid substitution in the envelope glycoprotein. Proc. Natl. Acad. Sci. USA 2004; 101:11344-11349.
Ortiz DI, Wozniak A, Tolson MW, Turner PE, Vaughan DR. Isolation of EEE virus from Ochlerotatus taeniorhynchus and Culiseta melanura in coastal South Carolina. J. Am. Mosq. Control Assoc. 2003; 19: 33-38.
Hribar LJ, Vlach JJ, Demay DJ, Stark LM, Stoner RL, Godsey MS, et al. Mosquitoes infected with West Nile virus in the Florida Keys, Monroe County, Florida, USA. J. Med. Entomol. 2003; 40: 361-363.
Manrique-Saide P, Escobedo-Ortegón J, Bolio-González M, Sauri-Arceo C, Dzib-Florez S, Guillermo-may G, et al. Incrimination of the mosquito, Aedes taeniorhynchus, as the primary vector of heartworm, Dirofilaria immitis, in coastal Yucatan, Mexico. Med. Vet. Entomol. 2010; doi: 10.1111/j.1365- 2915.2010.00884.x
Olano VA. Hallazgo de Aedes taeniorhynchus (Wiedemann 1821) en un lugar del municipio de Ambalema, Departamento del Tolima (Colombia) (Diptera: Culicidae). Biomédica 1985; 5: 26-28.
Mankin RW. Acoustical detection of Aedes taeniorhynchus swarms and emergence exoduses in remote salt marshes. J. Am. Mosq. Control Assoc. 1994. 10: 302-308.
Walter Reed Biosystematics Unit. [internet]. Washington, DC: Smithsonian Institution [acceso 25-04-2018]. WRBU Systematic catalog of Culicidae. Disponible en: http://www.mosquitocatalog.org/main.asp.
Bello F, Ruiz-García M. Isoenzyme Polymorphism and Genetic Structure of Ochlerotatus taeniorhynchus (Diptera: Culicidae) in Populations from the Colombian Atlantic Coast. Biochem Genet. 2009; 47: 462-470.
Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 2007; 22(3): 148-155. https://doi.org/10.1016/j.tree.2006.11.004.
Sáez AG. Genes y especies. . Ecosistemas 2009; 18: 3-9.
Kress WJ, García-Robledo C, Uriarte M, Erickson DL. DNA barcodes for ecology, evolution, and conservation. Trends Ecol. Evol. 2014; 30: 1-11.
Wang G, Li C, Guo X, Xing D, Dong Y, Wang Z, et al. Identifying the Main Mosquito Species in China Based on DNA Barcoding. PLoS ONE 2012; 7. https://doi.org/10.1371/journal.pone.0047051.
Ashfaq M, Hebert PDN, Mirza JH, Khan AM, Zafar Y, Mirza MS. Analyzing Mosquito (Diptera: Culicidae) Diversity in Pakistan by DNA Barcoding. PLoS ONE 2014; 9(5): e97268. https://doi.org/10.1371/journal.pone.0097268.
Paredes-Esquivel C, Donnelly MJ, Harbach RE, Townson H. A molecular phylogeny of mosquitoes in the Anopheles barbirostris Subgroup reveals cryptic species: Implications for identification of disease vectors. Mol. Phylogenetics Evol. 2009; 50: 141-151.
Azari-Hamidian S, Linton YM, Abai MR, Ladonni H, Oshaghi MA, Hanafi- Bojd AA, et al. Mosquito (Diptera: Culicidae) fauna of the Iranian islands in the Persian Gulf. J. Nat. Hist. 2010; 44(15): 913-925.
Gibson CM, Kao RH, Blevins KK, Travers PD. Integrative Taxonomy for Continental-Scale Terrestrial Insect Observations. PLoS ONE 2012; 7(5): e37528. doi:10.1371/journal.pone.0037528.
Clark-Gil S, Darsie RF. The mosquitoes of Guatemala, their identification, distribution and bionomics. Mosq Syst 1983; 15:151-284.
Ratnasingham S, Hebert PDN. BOLD: the barcode of life data system (http:// www.barcodinglife.org). Mol Ecol Notes 2007; 7: 355-364.
Ivanova NV, deWaard J, Hebert PDN. An inexpensive, automation-friendly protocol for recovering highquality DNA. Mol Ecol Notes 2006; 6: 998-1002.
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994; 3: 294-299.
Chan-Chable RJ, Ortega-Morales AI, Martínez-Arce A. First record of Psorophora albipes in Quintana Roo, México. J. Am. Mosq. Control Assoc. 2016; 32(3): 237-239. 10.2987/16-6580.1.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013; 30: 2725- 2729.
Saitou N, Nei M. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987; 4: 406-425.
Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN. DNA barcodes distinguish species of tropical Lepidoptera. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 968-971.
Puillandre N, Lambert A, Brouillet S, Achaz G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 2012; 21: 1864- 1877. 10.1111/j.1365-294X.2011.05239.x.
Jukes TH, Cantor CR. Evolution of protein molecules. En Munro HN. (editor). Mammalian Protein Metabolism. 1ª ed. New York, USA: Academic Press; 1969. p. 21-132).
Diéguez Fernández L, Mentor Sarría V, Peña Rodríguez J, Rivero Camejo M. Presence of Culicidae family in the touristic zone of Sta Lucia, Camagüey and its relationship with diseases of medical-veterinary importance. Rev. AMC 2005; 9(2), 1-11.
Baolin L. Fauna Sinica, Insecta Vol.9, Diptera: Culicidae I, II. Beijing: Science Press; 1997.
Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. PNAS 2004; 101: 14812-14817.
Cywinska A, Hunter FF, Hebert PDN. Identifying Canadian mosquito species through DNA barcodes. Med. Vet. Entomol. 2006; 20: 413-424.