2020, Number 1
<< Back Next >>
VacciMonitor 2020; 29 (1)
Immunogenicity and acute toxicity assay of the vaccine candidate against cholera vax-COLER®
Oliva-Hernández R, Infante-Bourzac JF, García-Imias L, García-Sánchez HM, Cedré-Marrero B, Sierra-González VG
Language: Portugués
References: 21
Page: 22-30
PDF size: 557.02 Kb.
ABSTRACT
Different strategies have been carried out for the control and prevention of human cholera. Vaccination is one of the most effective strategies. Preclinical evaluation of vaccines needs to prove their safety; whereby toxicological studies are decisive. They are mandatory and highly regulated. This study was aimed to demonstrate the relevance of Sprague Dawley rats as a biomodel, through the immunological response to vax-COLER
® cholera vaccine, using the technique of determination of vibriocidal antibodies. In addition, local and systemic toxicological effects were evaluated after administration of a dose of vax-COLER
®; through the evaluation of symptoms, water and food consumption, body weight and anatomopathological studies. The vax-COLER
® vaccine was immunogenic and showed no symptoms or deaths. No changes in body weight were detected, and food and water consumption were similar among all groups. The anatomopathological studies showed histological changes in the mesenteric lymph nodes and Peyer’s patches of the vaccinated animals, with hyperplasia of the subcapsular secondary follicles, finding that differed significantly from the rest of the groups. It is concluded that vax-COLER
® vaccine is immunogenic in Sprague-Dawley rats, demonstrating the relevance of the biomodel for the evaluation of preclinical safety, as well as that the application of a single dose did not produce acute general or local toxic effects.
REFERENCES
Harris JB, Larocque RC, Qadri F, Ryan ET, Calderwood SB. Cholera. The Lancet 2012;379:2466-76.
World Health Organization. Cholera. Wkly Epidemiol Rec No 38, 2018;93(38):489-500. Disponible en: http://www.who.int/wer/2018/wer9338/en/.
World Health Organization. Cholera [Internet]. Geneva: WHO; 2019. Disponible en: https://www.who.int/news-room/fact-sheets/detail/cholera.
Poulos C, Riewpaiboon A, Stewart JF, Clemens J, Guh S, Agtini M, et al. Costs of illness due to endemic cholera. Epidemiol Infect 2012;140(3):500-9.
World Health Organization. Cholera vaccines: WHO position paper. Wkly Epidemiol Rec 2017:92(34):477-500. Disponible en: http://www.who.int/wer/2017/wer9234/en/.
Clemens J, Shin S, Sur D, Nair GB, Holmgren J. New generation vaccines against cholera. Nat Rev Gastroenterol Hepatol. 2011;8(12):701-10.
Benítez JA, Silva A, Rodríguez B, Fando R, Campos J, Robert A, et al. Genetic manipulation of Vibrio cholerae for vaccine development: construction of live attenuated El Tor candidate vaccine strains. Arch Med Res 1996;27(3):275-83.
Oliva-Hernández R, García-Sánchez HM, Infante-Bourzac JF, Pérez-Quiñoy JL, Cedré-Marrero B, Valmaseda-Pérez T, et al. Biomodelos para la evaluación de cepas atenuadas como candidatos vacunales contra el cólera humano. Estudio de la toxigenicidad, inmunogenicidad y protección. VacciMonitor 2014;23(3):100-9.
European Medicines Agency. CPMP/8. SWP/465/95. Note for guidance on preclinical pharmacological and toxicological testing of vaccines (CPMP adopted Dec 97). London: EMEA; 1997 Disponible en: http://www.ema.europa.eu/docs/en_GB/document_library/Scienti%EF%AC%81c_guideline/2009/10/WC500004004.pdf.
World Health Organization. Guidelines on nonclinical evaluation of vaccine. Technical Report Series, No. 927. Geneva: WHO; 2005. Disponible en: http://www.who.int/biologicals/vaccines/nonclinial_evaluation_of_vaccines/en/.
European Medicine Agency. ICH/286/95. Note for guidance on nonclinical safety studies for the conduct of human clinical trials for pharmaceuticals. ICH M3 (R2). London: EMEA; 2008. Disponible en: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002941.pdf.
Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharma 2016;7:27-31.
Oliva-Hernández R, Fariñas-Medina M, Infante-Bourzac JF, Hernández-Salazar T, Nuñez-Martínez D, Quintero-Pérez A, et al. Estudio de tolerancia local de la vacuna antimeningocócica VA-MENGOC-BC® en ratas Sprague Dawley. Evaluación a los 24 y 36 meses en estante. VacciMonitor 2019;28(1):9-18.
Cedré B, García HM, García LG, Talavera A. Estandarización y evaluación del ensayo vibriocida modificado. Rev Cubana Med Trop 1999;51(3):156-9.
García L, Jidy MD, García H, Rodríguez BL, Fernández R, Ano G, et al. The vaccine candidate Vibrio cholerae 638 is protective against cholera in healthy volunteers. Infect Immun 2005;73(5):3018 -24.
López Y, Infante JF, Sifontes S, Díaz D, Pérez V, Año G, et al. Pharmacology and toxicology of an oral tablet whole cells inactivated cholera vaccine in Sprague Dawley rats. Vaccine 2011;29(19):3596-9.
García L, Oliva R, Cedré B, Valmaseda T, García H, Talavera A, et al. Intraduodenal inoculation of adults rabbits for evaluating the immunogenicity of genetically attenuated Vibrio cholerae strains. Lab Anim Sci 1998;48(5):538-41.
Kalambaheti T, Chaisri U, Srimanote P, Pongponratn E, Chaicumpa W. Immunogenicity and protective role of three formulations of oral cholera vaccine. Vaccine 1998;16(2-3):201-7.
Sifontes-Rodríguez SR, Infante-Bourzac JF, Días-Rivero D, López-Feria Y, Pérez-Pérez M, Sosa-Roble E, et al. Repeated Dose Toxicity Study of a Live Attenuated Oral Cholera Vaccine in Sprague Dawley Rats. Arch Med Res 2009;40(7):527-35.
Pastor M, Esquisabel A, Talavera A, Año G, Fernández S, Cedré B, et al. An approach to a cold chain free oral cholera vaccine: in vitro and in vivo characterization of Vibrio cholerae gastro-resistant microparticles. Int J Pharm. 2013;448(1):247-58.
Ahrendt M, Hammerschmidt SI, Pabst O, Pabst R, Bode U. Stromal cells confer lymph node-specific properties by shaping a unique microenvironment influencing local immune responses. J Immunol. 2008;181(3):1898-907.