2020, Number 1
<< Back Next >>
VacciMonitor 2020; 29 (1)
Application of Principal Component Analysis in the purification process of a biopharmaceutical
Gozá-León O, Fernández-Águila M, Rodríguez-Garcel RH, Ojito-Magaz E
Language: Portugués
References: 20
Page: 5-13
PDF size: 458.71 Kb.
ABSTRACT
This paper presents the application of the Principal Component Analysis, using the program THE UNSCRAMBLER version 8.0, to the data recorded during two years in the purification stage of a Recombinant Human Erythropoietin plant that is based on several chromatographic steps, similar to the purification process of recombinant proteins that are used as preventive or therapeutic vaccines. Dimensionality was reduced by obtaining two main components that explain 81% of the variance of 18 original variables related to four chromatographic steps. As a result, it was possible to define which variables have the greatest contribution to the variability of the process in the purification stage, allowing to extract useful information to achieve a greater understanding of the process and enrich the control strategies in the plant. These results corroborated practical experiences of plant specialists and allowed for recommendations to be considered in the continuous verification plan of the process, such as proposing three variables as process controls and taking into account that the performance of the second step is the most influential of the performances considered in the variability.
REFERENCES
Glassey J, Gernaey KV, Clemens C, Schulz TW, Oliveira R, Striedner G, et al. Process analytical technology (PAT) for biopharmaceuticals. Biotechnol. J. 2011;6(4):369-77.
Lalonde ME, Durocher Y. Therapeutic glycoprotein production in mammalian cells. J. Biotechnol. 2017;251:128-40.
Teixeira AP, Oliveira R, Alves PM, Carrondo MJT. Advances in on-line monitoring and control of mammalian cell cultures: Supporting the PAT initiative. Biotechnol. Adv. 2009;27:726-32.
Surabattula R, Sambasiva KRS, Polavarapu R. An optimized process for expression, scale-up and purification of recombinant erythropoietin produced in Chinese hamster ovary cell culture. Research in Biotechnology 2011;2(3):58-74.
Domínguez P, Zumalacárregui L, Caballero A. Assessment of the chromatographic resins Cellufine MAX Q-hv and Capto Q for r-HBsAg purification. Biotecnol. Apl. 2017;34:3201-7.
Columbié JC, Rosales M, Torres S, Veranes M, Quintero S. Uso de la vacuna CIMAvax-EGF® como práctica médica habitual. MEDISAN 2019;23(2):219-31.
Rathore A, Singh S. Use of multivariate data analysis in bioprocessing. BioPharm Int. 2015;28(6):26-31.
Troup G M, Georgakis C. Process systems engineering tools in the pharmaceutical industry. Comput. Chem. Eng. 2013;51:157-71.
Abdi H, Williams LJ. Principal component analysis. WIREs Comp. Stats. 2010;2(4):433-59.
Fasoula S, Zisi Ch, Sampsonidis I, Virgiliou Ch, Theodoridis G, Gika H, et al. Multivariate analysis of chromatographic retention data as a supplementary means for grouping structurally related compounds. J. Chromatogr. A 2015;1387:49-52.
Simon J, Felinger A. Two-dimensional correlation analysis of the reproducibility of high-performance liquid chromatography columns. J. Chromatogr. A 2015;1384:115-23.
Scharl T, Jungreuthmayer C, Dürauer A, Schweiger S, Schröder T, Jungbauer A. Trend analysis of performance parameters of pre-packed columns for protein chromatography over a time span of ten years. J. Chromatogr. A 2016;1465:63-70.
Ortiz E, Navarro M, Jaumot J, Tauler R. Chemometric evaluation of hydrophilic interaction liquid chromatography stationary phases: resolving complex mixtures of metabolites. Anal. Methods 2017;9:774-85.
Carnes S, O’Brien S, Szewczak A, Tremeau L, Rowe W, McCord B, Lurie I. Comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones. J. Sep. Sci. 2017;40(17):3545-56.
Andric F, Héberger K. How to compare separation selectivity of high-performance liquid chromatographic columns properly. J. Chromatogr. A 2017;1488:45-56.
Navarro-Reig M, Ortiz-Villanueva E, Tauler R, Jaumot J. Modelling of hydrophilic interaction liquid chromatography stationary phases using chemometric approaches. Metabolites 2017;7(54). doi: 10.3390/metabo7040054.
Rodríguez RH, Gozá O, Ojito E. Preliminary modeling of an industrial recombinant human erythropoietin purification process by Artificial Neural Networks. Braz. J. Chem. Eng. 2015;32(3):725-34.
Polanco JM. El papel del análisis por componentes principales en la evaluación de redes de control de la calidad del aire. Comunicaciones en Estadística 2016;9(2):271-94.
Gupta V, Mittal M, Ojha PC, Kumar P. Principal component analysis & factor analysis as an enhanced tool of pattern recognition. Int. J. Electr. Eng. Telecoms. 2015;1(2):73-8.
Mesa-Ramos L, Gozá-León O, Uranga-Machado M, Toledo-Rivero A, Gálvez-Torriente Y. Aplicación del Análisis de Componentes Principales en el proceso de fermentación de un anticuerpo monoclonal. VacciMonitor 2018;27(1):8-15.