2019, Number 4
<< Back Next >>
Rev Cubana Pediatr 2019; 91 (4)
Visual evoked responses to light-emitting diodes in goggles
Gaya VJA, Alvero GLM, Cabrera RL, Alvero GLM, Puentes CO
Language: Spanish
References: 20
Page: 1-17
PDF size: 507.32 Kb.
ABSTRACT
Introduction: The Visual Evoked Potentials is a neurophysiological technique to provide an objective assessment of the functional integrity of the visual pathway. However, the young children population is a particularly difficult (uncooperative) group to obtain visual responses.
Objective: The purpose of this study was to describe electrophysiological characteristics of the visual response in children.
Methods: Descriptive, cross-sectional study. Transient visual evoked potentials with goggles were recorded from 112 healthy children (65 males, 47 females) aged between 3 months to 5 years old. The mean (and standard deviations) for latencies and amplitudes of each component was calculated and both statistical significance in function of age was analyzed (linear regression model). Principal component analysis is use to explain the visual waveform variability. A discriminant equation (with indicators of reliability and noise/signal ratio) is calculate to evaluate contribution in detectability.
Results: The typical waveform of (N1, P1, N2, components) is consistent and reliable and showed a visual detection level >90% (for each component) and 85% of global success (good classifications) with the discriminant equation. N1-P1-N2 complex is able to explain >70% of the visual response variance. A significant reduction of N1, P1 (N2, marginal) latencies with increasing age is demonstrated (linear regression, p≤0.05). There was no significant difference for age-dependent increased pattern of amplitude data (high variability).
Conclusions: The visual evoked potentials/goggles obtained in infants and young children are consistent and reliable physiological responses (high detectability) with recognizable morphological variability.
REFERENCES
Green AJ. Visual Evoked Potentials, Electroretinography, and other diagnostic approaches to the visual system. En: Aminoff MJ, editor. Electrodiagnosis in Clinical Neurology. 6th ed. Philadelphia: Elsevier Saunders (Health Science Division); 2012. p. 477-503.
Walter WG, Dovey VJ, Shipton H. Analysis of the electrical response of the human cortex to photic stimulation. Nature. 1946;158(4016):540-1.
Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Phyisiol. 1962;160(1):106-54.
Creel DJ. Visually evoked potentials. Handb Clin Neurol. 2019;160(4):501-22.
Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Mizota A, et al. International Society for Clinical Electrophysiology of Vision (ISCEV Committee) standard for clinical visual evoked potentials: (2016 update). Doc Ophthalmol. 2016;133(1):1-9.
Hayashi H, Kawaguchi M. Intraoperative monitoring of flash visual evoked potential under general anestesia. Korean J Anesthesiol. 2017;70(2):127-35.
Khotari R, Bokariya P, Singh S, Singh R. A comprehensive review on methodologies employed for visual evoked potentials. London: Hindawi Publishing Corporation; 2016. Acceso: 22/03/2018. Disponible en: http://dx.doi.org/10.1155/2016/9852194/html/.
Birch EE, Subramanian V. Visual evoked potentials in infants and children. En: Aminoff MJ, editor. Electrodiagnosis in Clinical Neurology. 6th ed. Philadelphia: Elsevier Saunders (Health Science Division); 2012. p. 505-18.
Montes J. Potenciales evocados visuales en recién nacidos a término. Rev Cubana Pediatr. 1999;71(1):5-12.
Gaya JA, González JL, Charroó L, Castro M. Caracterización electrofisiológica de los potenciales evocados visuales a diodos en el paciente pediátrico. Rev CENIC (Ciencias Biológicas).1997;28(3):106-8.
Recasén-Linares A, Pérez-Abalo MC, Guilarte-Téllez J. Normativa para la realización e interpretación de potenciales evocados visuales en edades pediátricas. Rev Neurol. 2001;33(12):1112-6.
Yadav R, Poudel BH, Limbu N, Thakur D, Yadav S. Normative data of visual evoked potential in children and correlation with age. Asian J Med Sci. 2016;7(2):39-43.
Coté CJ, Wilson S; Work Group on Sedation, American Academy of Pediatrics, American Academy of Pediatric Dentistry, Guidelines for monitoring and management of pediatric patients before, during and after sedation for diagnostic and therapeutic procedures: update 2016. Pediatrics. 2016;138(1):e20161212.
Rodríguez JH, Gómez A, Corredor R, López de Meza C. Potenciales evocados visuales de pacientes en la unidad de cuidados intensivos. Acta Neurol Colomb. 2002;18(1):26-31.
Sato A. Interpretation of the causes of instability of flash visual evoked potentials in intraoperative monitoring and proposal of a recording method for reliable functional monitoring of visual evoked potentials using a light-emitting device. J Neurosurg. 2016;125(4):888-97.
Picton TW, Bentin S, Berg P, Donchin E, Hillyard SA, Johnson R, et al. Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria (Committee Report). Psychophysiology. 2000;37(2):127-52.
Eswaran H, Lowery CL, Wilson JD, Murphy P, Preissl H. Functional development of visual system in human fetus using magnetoencephalography. Exp Neurol. 2004;190(suppl.1):S52-8.
Nicot F, Flores R, Bron A, Creuzet-Garcher C, Renault F. Flash visual evoked potentials: maturation from birth to 15 years of age. Invest Ophthalmol Vis Sci. 2014;52(1):e399-410.
Sharma R, Joshi S, Singh KD, Kumar A. Visual Evoked Potentials: normative data and gender differences. J Clin Diagn Res. 2015;9(7):CC12-15.
Edwards JC, Kutluay E. Patterns of unclear significance. In: Shomer DL, Lopes da Silva FH, editors. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. 6th ed. Philadelphia: Lippincott William & Wilkins; 2011. p. 268-80.