2019, Number 1
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2019; 22 (1)
Activated carbon cloths: approaches and applications
García-Guel YY, Múzquiz-Ramos EM, Ríos-Hurtado JC
Language: Spanish
References: 83
Page: 1-16
PDF size: 1411.03 Kb.
ABSTRACT
Activated carbons (AC) are of special interest due to their exceptional physical and chemical properties, these
materials are in the form of granules or powders, but recently a new form of AC has been commercialized which
is also known as Activated Carbon Fiber (ACF), and is manufactured in two presentations, cloth and felt. Activated
carbon cloths (ACC) are materials that have excellent properties making them superior compared to traditional forms
and are produced from precursors, through various processes that include physical and chemical activation, among
the most commonly used impregnating agents are KOH, H
3PO
4, ZnCl
2, AlCl
3, NH
4Cl, Na
2CO
3 and K
2CO
3, whose
main function is to serve as dehydrators while preventing tars production. The characteristics and properties of the
ACC depend on the nature of the material that was used to produce it, these characteristics have been used in a large
number of applications, such as medicine, catalyst support systems, in the industry for the absorption of pollutants,
water purification and waste water treatment, among others. This review shows the generalities and applications in
recent studies and summarizes TCA applications from the different investigations carried out, as well as the process
for obtaining them.
REFERENCES
Adeniran, B. & Mokaya, R. (2015). Compactivation: a mechanochemical approach to carbons with superior porosity and exceptional performance for hydrogen and CO2 storage. Nano Energy, 16, 173–185. https://doi. org/10.1016/j.nanoen.2015.06.022
Ahn, H.J., Lee, J.H., Jeong, Y., Lee, J.H., Chi, Ch. S. & Oh, H.J. (2007). Nanostructured carbon cloth electrode for desalination from aqueous solutions. Materials Science and Engineering A., 449, 841-845. https://doi:10.1016/j. msea.2006.02.448
Babic, B. M., Milonjic, S. K.,Polovina, M. J. & Kaludierovic, B. V. (1999). Point of zero charge and intrinsic equilibrium constants of activated carbon cloth. Carbon, 37, 477-481. https://doi.org/10.1016/S0008-6223(98)00216-4
Babic, B. M., Milonjic, S. K., Polovina, M. J., Cupic, S. & Kaludierovic, B. V. (2002). Adsorption of zinc, cadmium and mercuryions from aqueous solutions on an activated carbon cloth. Carbon, 40, 1109-1115. https://doi. org/10.1016/S0008-6223(01)00256-1
Baroud, T.N. & Giannelis, E.P. (2018). High salt capacity and hig removal rate capacitive deionization enabled by hierarchicalporous carbons. Carbon, 139, 614-625. https://doi.org/10.1016/j.carbon.2018.05.053
Blanco, D.A., Giraldo, L. & Moreno, J. C. (2007). Adsorción de resorcinol desde solución acuosa sobre carbón activado. Revista Energética, 38, 73-77.https:// DOI: 10.15446/rev. colomb.quim
Boehm, A. V., Meininger, S., Tesch, A., Gbureck, U. & Müller, F. A. (2018). The Mechanical Properties of Biocompatible Apatite Bone Cement Reinforced with Chemically Activated Carbon Fibers. Materials, 11(192), 1-12. https://doi.org/10.3390/ma11020192
Caglayan, B. & Aksoylu, B. (2013). CO2 adsorption on chemically modified activated carbon. J. Hazard. Mater., 252, 19-28. https://doi.org/10.1016/j.jhazmat.2013.02.028
Canal, C. & Ginebra, M.P. (2011). Fibre-reinforced calcium phosphate cements: A review. Journal of the Mechanical Behavior of Biomedical Materials, 4(8), 1658-1671. https://doi.org/10.1016/j.jmbbm.2011.06.023
Cao, Y., Wang, K., Wang, X., Gu, Z., Ambrico, T., Gibbons, W., Fand, Q. & Talukder, T. (2017). Preparation of active carbons from corns talk for butanol vapor adsorption. Journal of Energy Chemistry, 26, 35-41. https://dx.doi. org/10.1016/j.jechem.2016.08.009.
Carrillo Quijano, C. C., (2013). Producción de carbón activado y sílice a partir de cascarilla de arroz - una revisión. Scientia Et Technica, 18(2), 422-429.http:// dx.doi.org/10.22517/23447214.7855
Chen, N., Han, C., Shi, R., Xu, L., Li, H., Liu, Y., Li, J. & Li, B. (2018). Carbon coated MoS2 nano sheets vertically grown on carbon cloth as efficient anodeforhigh-performance sodium ion hybrid capacitors. Electrochimica Acta, 283, 36-44. https://doi.org/10.1016/j.electacta.2018.06.082
Chen, P.A., Cheng, H.C. & Wang, H.P. (2018). Activated carbon recycled frombitter-tea and palm shell wastes for capacitive desalination of saltwater. Journal of cleaner Production, 174, 927-932. https://doi.org/10.1016/j. jclepro.2017.11.034
Coplas, F., Tarón, A. & González, R. (2017). Área superficial de carbones activados y modificados obtenidos del recurso agrícola Sacharum officinarum. Rev. Cienc. Agr., 34(2), 62-72. https://dx.doi.org/10.22267/rcia.173402.72.
Cordero-Lanzac, F., García-Mateos, F. J., Rosas, J. M., Rodríguez-Mirasol, J. & Cordero, T. (2018). Flexible binderless capacitors based on P- and N-containing fibrous activated carbons from denim cloth waste. Carbon, 139, 599-608. https://doi.org/10.1016/j.carbon.2018.06.060
Costa, P., Alves, J., Azevedo, D. & Bastos, M. (2017). Preparation of biomass-based activated carbons and their evaluation for biogas up grading purposes. Industrial Crops & Products, 109, 134-140. https://doi. org/10.1016/j.indcrop.2017.08.017.
Duan, X., Srinivasakannan, C., Wang, X., Wang, F. & Liu, X. (2017). Synthesis of activated carbon fibers from cotton by microwave induced H3PO4 activation. Journal of the Taiwan Institute of Chemical Engineers, 70, 374-381. https://dx.doi.org/10.22267/rcia.173402.72.
Estévez Mujica, C. F., Moreno-Pirajan, J. C. & Vargas, E. M. (2006). Obtención, caracterización y ensayo de telas de carbón activas. Revista de Ingeniería, 23, 68-75. https:// dx.doi.org/10.16924.
Feng, L., Li, G., Zhang, S. & Zhang, Y. X. (2017). Decoration of carbon cloth by manganese oxides for flexible asymmetric. Ceramics International, 43, 8321-8328. http://dx.doi.org/10.1016/j.ceramint.2017.03.168
Fernández, J., Bonastre, J., Molina, J., del Río, A. I. & Cases, F. (2017). Study on the specific capacitance of an activated carbon cloth modified with reduced graphene oxide and polyaniline by cyclic voltammetry. European Polymer Journal, 92, 194-203. http://dx.doi.org/10.1016/j. eurpolymj.2017.04.044
García-Ruíz, J. P. & Díaz Lantada, A. (2018). 3D Printed Structures Filled with Carbon Fibers and Functionalized with Mesenchymal Stem Cell Conditioned Media as In Vitro Cell Niches for Promoting Chondrogenesis. Materials, 11(23), 1-14. https://doi.org/10.3390/ ma11010023
Ghiabi, C., Ghaffarinejad, A., Kazemi, H. & Salahandish, R. (2018). In situ, one-step and co-electrodeposition of graphenes upported dendritic and spherical nanopalladium- silver bimetallic catalyst on carbon cloth for electro oxidation of methanol in alkaline media. Renewable Energy, 126, 1085-1092. https://doi. org/10.1016/j.renene.2018.04.040
Gineys, M., Benoit, R., Cohaut, N., Béguin, F. & Delpeux- Ouldriane, S. (2016). Grafting of activated carbon cloths for selective adsorption. Applied Surface Science, 370, 522-527. http://dx.doi.org/10.1016/j.apsusc.2015.11.257
Gineys, M., Benoit, R., Cohaut, N., Béguin, F. & Delpeux- Ouldriane, S. (2017). Behavior of activated carbon cloths used as electrode in electrochemical processes. Chemical Engineering Journal, 310, 1–12. http://dx.doi. org/10.1016/j.cej.2016.10.018
Giraldo, L. & Moreno, J. C. (2004). Determinación de la entalpía de inmersión y capacidad de adsorción de un carbón activado en soluciones acuosas de plomo. Rev. Colomb. Quim., 33(2), 87-97. https://doi:10.15446/rev. colomb.quim
Gudarzi, D., Ratchananusorn, W., Turunen, I., Heinonen, M. & Salmi, T. (2015). Factors affecting catalytic destruction of H2O2 by hydrogenation and decomposition over Pd catalyst supported on activated carbon cloth (ACC). CatalysisToday, 248, 69-79. http://dx.doi.org/10.1016/j. cattod.2013.12.050
Guedidi, H., Reinert, L., Soneda, Y., Bellakhal, N. & Duclaux, L. (2014). Adsorption of ibuprofeno from aqueous solution on chemically surface-modified activated carbon cloths. Arabian Journal of Chemistry, 10, 83584-83594. http://dx.doi.org/10.1016/j.arabjc.2014.03.007
Hernández, D., Jiménez, F., Mondragón, F. & López, D. (2007). Almacenamiento de Hidrógeno en carbones activados por oxidación con aire. Revista Energética, 37, 5-12. https://DOI:10.15446/energetica
Hernández-Rodríguez, M., Otero-Calvis, A., Falcón- Hernández, J. & Yperman, Y. (2017). Physicochemical Characteristic of Activated Carbon of Coconut Shell Modified with HNO3. Rev. Cubana Quím., 29 (1), 26-38.
Hong-mei, H., Phillips, G.J., Mikhalovsky, S.V. & Lloy, A.W. (2008). In vitro cytotoxicity assessment of carbon fabriccoated with calcium phosphate. New Carbon Materials, 23(2), 139–143. https://doi.org/10.1016/ S1872-5805(08)60017-7
Hu, M., Zhang, Z., Atkinson, J.D., Rood, M.J., Song, L. & Zhang, Z. (2019). Porous materials for steady-state NO conversion: Comparisons of activated carbon fiber cloths, zeolites and metal-organic frameworks. Chemical Engineering Journal, 360, 89-96.https://doi. org/10.1016/j.cej.2018.11.102
Huang, C. C. & Su, Y. J. (2010). Removal of copperions from waste water by adsorption/electrosorption on modified activated carbon cloths. Journal of Hazardous Material, 175, 477-483. https://doi.org/10.1016/j. jhazmat.2009.10.030
J. Filippín, A., S. Luna, N., T. Pozzi, M. & D. Pérez, J., (2017). Obtención y caracterización de carbón activado a partir de residuos olivícolas y oleícolas por activación física. Avances en Ciencias e Ingeniería, 8(3), 59-71.
Jeon, H., Jeong, J.M., Hong, S.B., Yang, M., Park, J., Kim, D.H., Hwang, S.Y. & Choi, B.G. (2018). Facile and fast microwave-assisted fabrication of activated and porous carbon cloth composites with graphene and MnO2 for flexible asymmetric supercapacitors. Electrochimica Acta, 280, 9-16. https://doi.org/10.1016/j.electacta.2018.05.108
Kilic M., Apaydin-Varol, E. & Pütün, A. E. (2011). Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from to bacco residues: Equilibrium kinetics and thermodynamics. J. Hazard. Mat., 189 (1-2), 397-403. https://doi.org/10.1016/j.jhazmat.2011.02.051
Kim C., Srimuk, P., Lee, J. & Fleischmann, S. (2017). Influence of pore structure and cell voltage of activated carbon cloth as a versatile electrode material for capacitive deionization. Carbon, 122, 329-335. http:// dx.doi.org/10.1016/j.carbon.2017.06.077
Kordek, K., Yin, H., Rutkowski, P. & Zhao, H. (2018). Cobalt-based composite film son electrochemically activated carbon cloth as high performance over all water splitting electrodes. International Journal of Hydrogen Energy, 44(1), 23-33.https://doi.org/10.1016/j. ijhydene.2018.02.095
Kostoglou, N., Koczwara, C., Prehal, C., Terziyska, V., Babic, B., Matovic, B., Constantinides, G., Tampaxis, C., Charalambopoulou, G., Steriotis, T., Hinder, S., Baker, M., Polychronopoulou, K., Doumanidis, C., Paris, O., Mitterer, C. & Rebholz, C. (2017). Nanoporous activated carbon cloth as a versatile material for hydrogen adsorption, selective gas separation and electrochemical energy storage. Nano Energy, 40, 49-64. http://dx.doi. org/10.1016/j.nanoen.2017.07.056
Kumita, M., Yamawaki, N., Shinohara, K., Higashi, H., Kodama, A., Kobayashi, N., Seto, T. & Otani, Y. (2018) Methanol adsorption behaviors of compression-molded activated carbon fiber with PTFE. International Journal of refrigeration, 2018, 127-135. https://doi.org/10.1016/j. ijrefrig.2018.07.036
Laxman, K., ZarMyint, M. T., Al Abri, M., Sathe, P.,Dobretsov, S. & Duttaa, J. (2015). Desalination and disinfection of inland brackish ground water in a capacitive deionization cellusing nanoporous activated carbon cloth electrodes. Desalination, 362, 126-132. https://doi.org/10.1016/j. desal.2015.02.010
Leyva Ramos, R., Díaz Flores, P. E., Guerrero Coronado, R. M., Mendoza Barrón, J. & Aragón Piña, A. (2004). Adsorción de Cd (II) en solución acuosa sobre diferentes tipos de fibras de carbón activado. Rev. Soc. Quím. Méx., 48, 196-202.
Li, N., An, J., Wang, X., Wang, H., Lu, L. & Ren, J.R. (2017). Resin-enhanced rolling activated carbon electrode for efficient capacitive deionization. Desalination, 419, 20- 28. http://dx.doi.org/10.1016/j.desal.2017.05.035
Lin, Y. H., Hsu, W. S., Chung, W. Y., Ko, T. H. & Lin, J. H. (2014). Evaluation of various silver-containing dressing on infected excision wound healing study. Journal of Materials Science: Materials in Medicine, 25, 1375- 1386. https://doi.org/10.1007/s10856-014-5152-1
Ling, J., Zou, H., Yang, W., Chen, W., Lei, K. & Chen, S. (2018). Facile fabrication of polyaniline/molybdenum trioxide/activated carbon cloth composite for supercapacitors. Journal of Energy Storage, 20, 92-100. https://doi.org/10.1016/j.est.2018.09.007
Liu, Y., Fan, Y.S. & Liu, Z.M. (2019). Pyrolysisofironphthalocyanine on activated carbon as highly efficientnon-noble metal oxygen reduction catalyst in microbial fuel cells. Chemical Engineering Journal, 361, 416-427. https://doi.org/10.1016/j. cej.2018.12.105
López Peñalver, J., Linares-Fernández, J. L., de Araujo Farías, V., López-Ramón, M. V., Tassi, M., Oliver, F. J., Moreno- Castilla, C. & Ruiz de Almodóvar, J. M. (2009). Activated carbon cloth as support form esenchymalstem cell growth and differentiation toost eocytes. Carbon, 47, 3574-3577. https://doi.org/10.1016/j.carbon.2009.08.016
López, D., Hoyos, J.A. & Mondragón, F. (2011). Adsorción catalítica de NO a baja temperatura sobre monolitos de carbón activado. Revista Facultad de Ingeniería Universidad de Antioquia, 57, 75-84.
Lozano-Castello, D., Alcaniz-Monge, J., De la Casa-Lillo, M. A., Cazorla-Amorós, D., & Linares-Solano, A. (2002). Advances in the study of methane storage in porous carbonaceous materials. Fuel, 81(14), 1777–1803. https:// doi.org/10.1016/S0016-2361(02)00124-2
Luna, D., González, A., Gordon, M., & Martín, N. (2007). Obtención de carbón activado a partir de cáscara de coco. Contactos, 67, 39-48.
Masson, S., Gineys, M., Delupeux-Ouldriane, S., Reinert, L., Guittonneau, S., Beguin, F. & Duclaux, L. (2016). Single,binary, and mixture adsorption of nine organic contaminants onto a microporous and a microporous/ mesoporous activated carbon cloth. Microporous and Mesoporous Materials, 234, 24-34. http://dx.doi. org/10.1016/j.micromeso.2016.07.001
Matatov-Meytal, Y. & Sheintuch, M., (2002). Review Catalytic fibers and cloths. Applied Catalysis A: General, 231, 1–16.
Matovic, L. L., Vukelic, N. S., Jovanovic, U. D., Kumric, K. R., Krstic, J. B., Babic, B. M. & Dukic, A. B. (2016). Mechano chemically improved surface properties of activated carbon cloth for the removal of As(V) from aqueous solutions. Arabian Journal of Chemistry, (enimpresión ) http://dx.doi.org/10.1016/j.arabjc.2016.07.004
Mena Aguilar, K. M., Amano, Y. & Machida, M. (2016). Ammonium persulfate oxidized activated carbonfiber as a high capacity adsorbent for aqueous Pb (II). Journal of Environmental Chemical Engineering, 4, 4644-4652. http://dx.doi.org/10.1016/j.jece.2016.10.028
Menéndez-Díaz, J. A. & Martín-Gullón, I. (2006). Types of carbon adsorbents and their production. Interface Science and Technology, 7, 1-47. https://doi.org/10.1016/S1573- 4285(06)80010-4
Min, B. H., Choi, J. H. & Jung, K. Y. (2018). Improved capacitived eionization of sulfonated carbon/titania hybrid electrode. Electrochimica Acta, 270, 543-551. https://doi.org/10.1016/j.electacta.2018.03.079
Mohan, D., Singh, K.P. & Singh, V.K., (2006). Trivalentchromium removal from waste water usinglow cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. JournalofHazardousMaterials B, 135, 280-295. https:// doi:10.1016/j.jhazmat.2005.11.075
Myint, M.T.Z. & Dutta, Y. (2012). Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach. Desalination, 305, 24-30. https:// doi.org/10.1016/j.desal.2012.08.010
Myint, M.T.Z., Al-Harthi, S. H. & Dutta, Y. (2014). Brackish water desalination by capacitived eionization using zinc oxide micro/nanostructures grafted on activated carbon cloth electrodes. Desalination, 344, 236-242. https://doi. org/10.1016/j.desal.2014.03.037
Navarro, P. & Vargas, C. (2010). Efecto de las propiedades físicas del carbón activado en la adsorción de oro desde medio cianuro. Revista de Metalurgia, 46(3), 227-239. https://doi:10.3989/revmetalm.0929
Nieto-Delgado, C., Partida-Gutiérrez, D. & Rangel-Méndez, J.R. (2019). Preparation of activated carbon cloths from renewable natural fabrics and their performance during the adsorption of model organic and inorganic pollutants in water. Journal of Cleaner Production, 213, 650-658. https://doi.org/10.1016/j.jclepro.2018.12.184
Ocampo-Pérez, R., Orellana-García, F., Sánchez-Polo, M., Rivera-Utrilla, J., Velo-Gala, I., López-Ramón, M.V. & Álvarez-Merino, M.A. (2013). Nitromidazoles adsorptionon activated carbon cloth from aqueous solution. Journal of Colloid and Interface Science, 401, 116-124. http://dx.doi.org/10.1016/j.jcis.2013.03.038
Oh, H. J., Lee, J. H., Ahn, H. J., Jeong, Y., Kim, Y. J. & Chi, C. S. (2006). Nanoporous activated carbon cloth for capacitived eionization of aqueous solution. Thin Solid Films, 515, 220-225. https://doi.org/10.1016/j. tsf.2005.12.146
Oladunni, J., Zain, J.H., Hai, A., Banat, F., Bharath, G. & Alhseinat, E. (2018). A comprehensive review on recently developed carbon based nanocomposites for capacitived eionization: From theory to practice. Separation and Purification Technology, 207, 291-320. https://doi. org/10.1016/j.seppur.2018.06.046
Ospina-Guarín, V. M., Buitrago-Sierra, R. & López-López, D. P. (2014). Preparation and characterization of activated carbon from castor de-oiled cake. Tecnológicas, 17(32), 75-84.
Ouyang, T., Cheng, K., Yang, F., Jiang, J., Yan, J., Zhu, K., Ye, K.,Wang, G., Zhou, L. & Cao, D. (2018). A general insituetching and synchronousheteroatom doping strategy to boost the capacitive performance of commercial carbon fiber cloth. Chemical Engineering Journal, 335, 638-646. https://doi.org/10.1016/j.cej.2017.11.009
Peng, C. W. & Lin, H. C. (2017). Adsorption for Dyeson Activation Carbons from Japanese Cedar Wood Prepared by Precarbonization and Two-stage Composite Activations with Wood Ash and Steam. International Journalof Chemical Engineering and Applications, 8(4), 277-285. https://doi:10.18178/ijcea.2017.8.4.670
Rangel-Méndez, J.R. & Streat, M., (2002). Adsorption of cadmium by activated carbon cloth: influence of surface oxidation and solution pH. Water Research, 36, 1244– 1252.https://doi.org/10.1016/S0043-1354(01)00343-8
Robles Andrade, S., Silva Rodrigo, R., García Alamilla, R., Ramos Galván, C. E., Carrizales Martínez, G., Sandoval Robles, G. & Castillo Mares, A. (2006). Carbón activado modificado como soporte para catalizadores prototipo de HDS. Revista Mexicana de Ingeniería Química, 5(3), 279-284.
Rodríguez, G., Giraldo, L. & Moreno, J. C. (2009). Immersion enthalpies of activated carbon cloths as physicalchemistry characterization parameter. Rev. Colom. Quim., 38(3), 435-445.
Rodríguez, G., Giraldo, L. & Moreno, J.C. (2007). Preparation and characterization of activated carbon cloths influence of precursor of cotton. Rev. Colom. Quim., 36(1), 43-53.
Ryoo, M.W., Kim, J.H. & Seo, G. (2003). Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution. Journal of colloid and interface science, 264, 414-419. https://doi:10.1016/ S0021-9797(03)00375-8
Sevilla, M., Fuertes, A. B. & Mokaya, R. (2011). Preparation and hydrogen storage capacity of highly porous activated carbon materials derived from polythiophene. International Journal of Hydrogen Energy, 36, 15658- 15663. https://doi:10.1016/j.ijhydene.2011.09.032
Sieben, J. M., Morallón, E. & Cazorla-Amorós, D. (2013). Flexible ruthenium oxide-activated carbon cloth composite prepared by simple electrodepositation methods. Energy, 58, 519-526. http://dx.doi. org/10.1016/j.energy.2013.04.077
Song, X., Liu, H., Cheng, L. & Qu, Y. (2010). Surface modification of coconut-based activated carbon by liquidphaseoxidation and its effects on lead ion adsorption. Desalination, 255(1-3),78-83. https://doi.org/10.1016/j. desal.2010.01.011
Thamiselvan, A., Govindan, K., Samson Nesaraj, A., Uma Maheswan, S., Oren, Y., Noel, M. & James, E. J. (2018). Investigation on the effect of organic dye molecules on capacitive deionization of sodium sulfate salt solution using activated carbon cloth electrodes. Electrochimica Acta, 279, 24-33. https://doi.org/10.1016/j. electacta.2018.05.053
Tongpoothorn, W., Sriuttha, M., Homchan, P., Chanthai, S. & Ruangviriyacha, C. (2011). Preparation of activated carbon derived from Jatropha curcas fruit Shell by simple thermochemical activation and characterization of their physicochemical properties. Chem. Eng. Res. Des., 89(3), 335-340. https://doi.org/10.1016/j.cherd.2010.06.012.
Tripathi, N. K., Singh, V. V., Sathe, M., Thakare V. B. & Singh, B. (2018). Activated Carbon Fabric: An Adsorbent Material for Chemical Protective Clothing. Defence Science Journal, 68(1), 83-90. https://DOI:10.14429/ dsj.68.11734
Wang, H., Deng, J., Xu, C., Chen, Y., Xu, F., Wang, J. & Wang, Y. (2017). Ultramicroporous carbon cloth for flexible energy storage with high a real capacitance. Energy Storage Materials, 7, 216-221. http://dx.doi. org/10.1016/j.ensm.2017.03.002
Wei, Y., Wang, R., Meng, L., Wang, Y., Li, G., Xin, S., Zhao, X. & Zhang, K. (2017). Hydrogen generation from alkaline NaBH4 solution using a dandelion-like Co– Mo–B catalyst supported on carbon cloth. International Journal of Hydrogen Energy, 42(15), 9945-9951. https:// doi.org/10.1016/j.ijhydene.2016.12.130
Yoda, T., Shibuya, K. & Myoubudani, H. (2018). Preparation of activated carbon fibers from mixtures of cotton and polyester fibers. Measurement, 125, 572-576. https://doi. org/10.1016/j.measurement.2018.05.044
Zhang, Ch., He, D., Ma, J., Tang, W. & Waite, T.D. (2018). Faradaic reactions in capacitived eionization (CDI) - problems and posibilities: A review. Water Research, 128, 314-330. https://doi.org/10.1016/j.watres.2017.10.024
Zhao, F., Rahunen, N., Varcoe, J. R., Chandra, A., Avignone- Rossa, C., Thumser, A. E. & Slade, R. C. (2008). Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environ. Sci. Technol., 42 (13), 4971- 4976. https://DOI:10.1021/es8003766
Zou, N., Nie, Q., Zhang, X., Zhang, G., Wang, J. & Zhang, P. (2019). Electrothermal regeneration by Joule heat effect on carbon cloth based MnO2 catalyst for long-term formaldehyde removal. Chemical Engineering Journal, 357, 1-10. https://doi.org/10.1016/j.cej.2018.09.117