2019, Number 1
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2019; 22 (1)
Hydrophobic interaction chromatography as separation method of alkaline proteases from viscera of Scomberomorus sierra
Osuna-Amarillas PS, Rouzaud-Sandez O, Higuera-Barraza OA, Arias-Moscoso JL, López-Mata MA, Campos-García JC, Valdez-Melchor RG
Language: Spanish
References: 23
Page: 1-10
PDF size: 448.96 Kb.
ABSTRACT
This study focused on recovering alkaline proteases from the viscera of
Scomberomorus sierra through hydrophobic
interaction chromatography. Three alkaline proteases were partially separated using this chromatographic technique;
two of them, with molecular weights of 19 and 31 kDa, were identified as trypsin-like enzymes according to inhibition
assays. The 31 kDa alkaline protease, the only isolated enzyme, was purified under following chromatographic
conditions: ammonium sulfate 13% (w/v) and ethylene glycol 27% (w/v); this enzyme showed maximum activity
at pH 9 – 10 and 50 – 60 °C and was strongly inhibited by soybean trypsin inhibitor (SBTI) and porcine trypsin
inhibitor (TPI). A third alkaline protease with molecular weight of 20 kDa was partially separated and inhibited by
tosyl phenylalanyl chloromethyl ketone (TPCK), showing optimum activity at pH 9 – 11 and 60 °C. These results
show that the viscera of
Scomberomorus sierra may be useful as source of proteases.
REFERENCES
An, H., Seymour, T.A., Juwen, W. & Morrisey, M.T. (1994). Assay systems and characterization of pacific whiting (Merluccius productus) protease. Journal of Food Science, 59(2), 277-281. https://doi.org/10.1111/j.1365-2621.1994. tb06947.x
Balti, R., Bougherra, F., Bougatef, A., Hayet, B.K., Nedjar- Arroume, N., Dhulster, P., Guillochon, D. & Nasri, M. (2012). Chymotrypsin from the hepatopancreas of cuttle fish (Sepia officinalis) with high activity in the hydrolysis of long chain peptide substrates: purification and biochemical characterization. Food Chemistry, 130(3), 475-484. https://doi.org/10.1016/j.foodchem.2011.07.019
Bkhairia, I., Khaled, H.B., Ktari, N., Miled, N., Nasri, M. & Ghorbel, S. (2016). Biochemical and molecular characterization of a new alkaline trypsin from Liza aurata: structural features explaining thermal stability. Food Chemistry, 196, 1346-1354. https://doi. org/10.1016/j.foodchem.2015.10.058
Bradford, M.M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi. org/10.1016/0003-2697(76)90527-3
Brian, C.S. & Lenhoff, A.M. (2008). Hydrophobic interaction chromatography of proteins: III. Transport and kinetic parameters in isocratic elution. Journal of Chromatography A., 1205(1-2), 46-59. https://doi. org/10.1016/j.chroma.2008.07.079 Castillo-Yáñez, F.J., Pacheco-Aguilar, R., García-
Carreño, F.L., Navarrete-Del Toro, M.A. & Félix- López, M. (2006). Purification and biochemical characterization of chymotrypsin from the viscera of Monterey sardine (Sardinopssagax caeruleus). Food Chemistry, 99(2), 252-259. https://doi.org/10.1016/j. foodchem.2005.06.052
Heussen, C. & Dowdle, E.B. (1980). Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Analytical Biochemistry, 102(1), 196-202. https://doi.org/10.1016/0003-2697(80)90338-3
Hofstee, B.H.J. (1975). Accessible hydrophobic groups of native proteins. Biochemical and Biophysical Research Communication., 63(3), 618-624. https://doi.org/10.1016/ S0006-291X(75)80429-3
Khandagale, A.S., Sarojini, B.K., Kumari, S.N., Suman Joshi, S.D. & Nooralabettu, K. (2015). Isolation, purification, and biochemical characterization of trypsin from Indian mackerel (Rastralliger kanagurta). Journal of Aquatic Food Product Technology, 24(4), 354-367. https://doi.org /10.1080/10498850.2013.777864
Kishimura, H., Hayashi, K., Miyashita, Y. & Nonami, Y. (2005). Characteristics of two trypsin isozymes from the viscera of japanese anchovy (Engraulis japonica). Journal of Food Biochemistry, 29(5), 459-469. https:// doi.org/10.1111/j.1745-4514.2005.00029.x
Klomklao, S., Benjakul, S., Visessanguan, W., Simpson, B.K. & Kishimura, H. (2005). Partitioning and recovery of proteinase from tuna spleen by aqueous two-phase systems. Process Biochemistry, 40(9), 3061-3067. https:// doi.org/10.1016/j.procbio.2005.03.009
Klotz, I.M., (1970). Comparison of molecular structures of proteins: helix content, distribution of apolar residues. Archives of Biochemistry and Biophysics, 138(2), 704- 706. https://doi.org/10.1016/0003-9861(70)90401-7
Kristjansson, M.M. & Nielsen, H.H. (1992). Purification and characterization of two chymotrypsin-like proteases from the pyloric caeca of rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 101(1-2), 247-253. https:// doi.org/10.1016/0305-0491(92)90187-V
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage t4. Nature, 227, 680-685. https://doi.org/10.1038/227680a0
Liu, Z.Y., Wang, Z., Xu, S.Y. & Xu, L.N. (2007). Two trypsin isoforms from the intestine of the grass carp (Ctenopharyn godonidellus). Journal of Comparative Physiology b, 117(6), 655-666. DOI 10.1007/s00360-007-0163-6
Nalinanon, S., Benjakul, S., Visessanguan, W. & Kishimura, H. (2009). Partitioning of protease from stomach of albacore tuna (Thunnus alalunga) by aqueous two-phase systems. Process Biochemistry, 44(4), 471-476. https:// doi.org/10.1016/j.procbio.2008.12.018
Olivas-Burrola, H., Ezquerra-Brauer, J.M., Rouzaud-Sandez, O. & Pacheco-Aguilar, R. (2001). Protease activity and partial characterization of the trypsin-like enzyme in the digestive tract of the tropical Sierra Scomberomorus concolor. Journal of Aquatic Food Product Technology, 10(4), 51-64. https://doi.org/10.1300/J030v10n04_05
Osuna-Amarillas, P.S., Cinco-Moroyoqui, F.J., Cárdenas- López, J.L., Ezquerra-Brauer, J.M., Sotelo-Mundo, R., Cortez-Rocha, M.O., Barrón-Hoyos, J.M. Rouzaud- Sández & Borbón-Flores, J. (2012). Biochemical and kinetic characterization of the digestive trypsin-like activity of the lesser grain borer Rhyzopertha dominica (F.) (Coleoptera:Bostrichidae). Journal of Store Products Research., 51, 41-48. https://doi.org/10.1016/j. jspr.2012.06.005
Reyes-Guzmán, R., Borbón-Flores, J., Cinco-Moroyoqui, F.J., Rosas-Burgos, E.C., Osuna-Amarillas, P.S., Wong-Corral, F.J., Ortega-Nieblas, M.M. & León-Lara, J.D.D. (2012). Actividad insecticida de aceites esenciales de las especies de Eucalyptus sobre Rhyzopertha dominica y su efecto en enzimas digestivas de progenies. Revista Chapingo Series Ciencias Forestales y del Ambiente. 18(3), 385- 394. http://dx.doi.org/10.5154/r.rchscfa.2012.02.015
Queiroz, J.A., Tomaz, C.T. & Cabral, J.M.S. (2001). Hydrophobic interaction chromatography of proteins. Journal of Biotechnology, 87, 143-159. https://doi. org/10.1016/S0168-1656(01)00237-1
Tsumoto, K., Ejima, D., Senczuk, A.M., Kita, Y. & Arakawa, T. (2007). Effects of salts on protein-surface interactions: applications for column chromatography. Journal of Pharmaceutical Sciences. 96(7), 1677-1690. https://doi. org/10.1002/jps.20821
Valdez-Melchor, R.G., Ezquerra-Brauer, J.M., Cinco- Moroyoqui, F.J., Castillo-Yáñez, F.J. & Cárdenas-López, J.L. (2013). Purification and partial characterization of trypsin from the viscera of tropical sierra (Scomberomorus sierra) from the Gulf of California. Journal of Food Biochemistry, 37(6), 694-701. https://doi.org/10.1111/ j.1745-4514.2012.00667.x
Yang, F., Wen-Jin, S., Bao-Ju, L., Wu, T., Le-Chang, S., Hara, K. & Min-Jie, C. (2009). Purification and characterization of chymotrypsins from the hepatopancreas of crucian carp (Carassius auratus). Food Chemistry, 116(4), 860-866. https://doi. org/10.1016/j.foodchem.2009.03.035