2019, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2019; 22 (1)
Cromatografía de interacción hidrofóbica como método de separación de proteasas alcalinas de vísceras de Scomberomorus sierra
Osuna-Amarillas PS, Rouzaud-Sandez O, Higuera-Barraza OA, Arias-Moscoso JL, López-Mata MA, Campos-García JC, Valdez-Melchor RG
Idioma: Español
Referencias bibliográficas: 23
Paginas: 1-10
Archivo PDF: 448.96 Kb.
RESUMEN
Este estudio se enfocó en recuperar proteasas alcalinas de vísceras de
Scomberomorus sierra mediante cromatografía de
interacción hidrofóbica. Tres proteasas alcalinas se lograron separar parcialmente usando esta técnica cromatográfica;
dos de ellas con pesos moleculares de 19 y 31 kDa fueron identificadas como enzimas tipo tripsina de acuerdo a
ensayos de inhibición. La proteasa alcalina con peso molecular de 31 kDa, única enzima aislada, fue purificada bajo
las siguientes condiciones cromatográficas: sulfato de amonio l3% (p/v) y etilenglicol al 27% (p/v); esta enzima
mostró actividad máxima a pH 9 – 10 y 50 – 60 °C y fue fuertemente inhibida por el inhibidor de tripsina de soya
(SBTI) como por el inhibidor de tripsina porcina (TPI). Una tercera proteasa alcalina con peso molecular de 20 kDa
fue parcialmente separada e inhibida por tosil fenilalanil clorometil cetona (TPCK), la cual mostró actividad óptima a
pH 9 – 11 y 60 °C. Estos resultados muestran que las vísceras de Scomberomorus sierra podrían ser de utilidad como
fuente de proteasas.
REFERENCIAS (EN ESTE ARTÍCULO)
An, H., Seymour, T.A., Juwen, W. & Morrisey, M.T. (1994). Assay systems and characterization of pacific whiting (Merluccius productus) protease. Journal of Food Science, 59(2), 277-281. https://doi.org/10.1111/j.1365-2621.1994. tb06947.x
Balti, R., Bougherra, F., Bougatef, A., Hayet, B.K., Nedjar- Arroume, N., Dhulster, P., Guillochon, D. & Nasri, M. (2012). Chymotrypsin from the hepatopancreas of cuttle fish (Sepia officinalis) with high activity in the hydrolysis of long chain peptide substrates: purification and biochemical characterization. Food Chemistry, 130(3), 475-484. https://doi.org/10.1016/j.foodchem.2011.07.019
Bkhairia, I., Khaled, H.B., Ktari, N., Miled, N., Nasri, M. & Ghorbel, S. (2016). Biochemical and molecular characterization of a new alkaline trypsin from Liza aurata: structural features explaining thermal stability. Food Chemistry, 196, 1346-1354. https://doi. org/10.1016/j.foodchem.2015.10.058
Bradford, M.M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi. org/10.1016/0003-2697(76)90527-3
Brian, C.S. & Lenhoff, A.M. (2008). Hydrophobic interaction chromatography of proteins: III. Transport and kinetic parameters in isocratic elution. Journal of Chromatography A., 1205(1-2), 46-59. https://doi. org/10.1016/j.chroma.2008.07.079 Castillo-Yáñez, F.J., Pacheco-Aguilar, R., García-
Carreño, F.L., Navarrete-Del Toro, M.A. & Félix- López, M. (2006). Purification and biochemical characterization of chymotrypsin from the viscera of Monterey sardine (Sardinopssagax caeruleus). Food Chemistry, 99(2), 252-259. https://doi.org/10.1016/j. foodchem.2005.06.052
Heussen, C. & Dowdle, E.B. (1980). Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Analytical Biochemistry, 102(1), 196-202. https://doi.org/10.1016/0003-2697(80)90338-3
Hofstee, B.H.J. (1975). Accessible hydrophobic groups of native proteins. Biochemical and Biophysical Research Communication., 63(3), 618-624. https://doi.org/10.1016/ S0006-291X(75)80429-3
Khandagale, A.S., Sarojini, B.K., Kumari, S.N., Suman Joshi, S.D. & Nooralabettu, K. (2015). Isolation, purification, and biochemical characterization of trypsin from Indian mackerel (Rastralliger kanagurta). Journal of Aquatic Food Product Technology, 24(4), 354-367. https://doi.org /10.1080/10498850.2013.777864
Kishimura, H., Hayashi, K., Miyashita, Y. & Nonami, Y. (2005). Characteristics of two trypsin isozymes from the viscera of japanese anchovy (Engraulis japonica). Journal of Food Biochemistry, 29(5), 459-469. https:// doi.org/10.1111/j.1745-4514.2005.00029.x
Klomklao, S., Benjakul, S., Visessanguan, W., Simpson, B.K. & Kishimura, H. (2005). Partitioning and recovery of proteinase from tuna spleen by aqueous two-phase systems. Process Biochemistry, 40(9), 3061-3067. https:// doi.org/10.1016/j.procbio.2005.03.009
Klotz, I.M., (1970). Comparison of molecular structures of proteins: helix content, distribution of apolar residues. Archives of Biochemistry and Biophysics, 138(2), 704- 706. https://doi.org/10.1016/0003-9861(70)90401-7
Kristjansson, M.M. & Nielsen, H.H. (1992). Purification and characterization of two chymotrypsin-like proteases from the pyloric caeca of rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 101(1-2), 247-253. https:// doi.org/10.1016/0305-0491(92)90187-V
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage t4. Nature, 227, 680-685. https://doi.org/10.1038/227680a0
Liu, Z.Y., Wang, Z., Xu, S.Y. & Xu, L.N. (2007). Two trypsin isoforms from the intestine of the grass carp (Ctenopharyn godonidellus). Journal of Comparative Physiology b, 117(6), 655-666. DOI 10.1007/s00360-007-0163-6
Nalinanon, S., Benjakul, S., Visessanguan, W. & Kishimura, H. (2009). Partitioning of protease from stomach of albacore tuna (Thunnus alalunga) by aqueous two-phase systems. Process Biochemistry, 44(4), 471-476. https:// doi.org/10.1016/j.procbio.2008.12.018
Olivas-Burrola, H., Ezquerra-Brauer, J.M., Rouzaud-Sandez, O. & Pacheco-Aguilar, R. (2001). Protease activity and partial characterization of the trypsin-like enzyme in the digestive tract of the tropical Sierra Scomberomorus concolor. Journal of Aquatic Food Product Technology, 10(4), 51-64. https://doi.org/10.1300/J030v10n04_05
Osuna-Amarillas, P.S., Cinco-Moroyoqui, F.J., Cárdenas- López, J.L., Ezquerra-Brauer, J.M., Sotelo-Mundo, R., Cortez-Rocha, M.O., Barrón-Hoyos, J.M. Rouzaud- Sández & Borbón-Flores, J. (2012). Biochemical and kinetic characterization of the digestive trypsin-like activity of the lesser grain borer Rhyzopertha dominica (F.) (Coleoptera:Bostrichidae). Journal of Store Products Research., 51, 41-48. https://doi.org/10.1016/j. jspr.2012.06.005
Reyes-Guzmán, R., Borbón-Flores, J., Cinco-Moroyoqui, F.J., Rosas-Burgos, E.C., Osuna-Amarillas, P.S., Wong-Corral, F.J., Ortega-Nieblas, M.M. & León-Lara, J.D.D. (2012). Actividad insecticida de aceites esenciales de las especies de Eucalyptus sobre Rhyzopertha dominica y su efecto en enzimas digestivas de progenies. Revista Chapingo Series Ciencias Forestales y del Ambiente. 18(3), 385- 394. http://dx.doi.org/10.5154/r.rchscfa.2012.02.015
Queiroz, J.A., Tomaz, C.T. & Cabral, J.M.S. (2001). Hydrophobic interaction chromatography of proteins. Journal of Biotechnology, 87, 143-159. https://doi. org/10.1016/S0168-1656(01)00237-1
Tsumoto, K., Ejima, D., Senczuk, A.M., Kita, Y. & Arakawa, T. (2007). Effects of salts on protein-surface interactions: applications for column chromatography. Journal of Pharmaceutical Sciences. 96(7), 1677-1690. https://doi. org/10.1002/jps.20821
Valdez-Melchor, R.G., Ezquerra-Brauer, J.M., Cinco- Moroyoqui, F.J., Castillo-Yáñez, F.J. & Cárdenas-López, J.L. (2013). Purification and partial characterization of trypsin from the viscera of tropical sierra (Scomberomorus sierra) from the Gulf of California. Journal of Food Biochemistry, 37(6), 694-701. https://doi.org/10.1111/ j.1745-4514.2012.00667.x
Yang, F., Wen-Jin, S., Bao-Ju, L., Wu, T., Le-Chang, S., Hara, K. & Min-Jie, C. (2009). Purification and characterization of chymotrypsins from the hepatopancreas of crucian carp (Carassius auratus). Food Chemistry, 116(4), 860-866. https://doi. org/10.1016/j.foodchem.2009.03.035