2019, Number 1
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2019; 22 (1)
Nontuberculous mycobacteria from mexican archaeological sites
Alcalde-Vázquez R, González-y-Merchand JA, Medina-Jaritz NB, Olvera-Ramírez R
Language: English
References: 23
Page: 1-9
PDF size: 447.71 Kb.
ABSTRACT
We examined several buildings of nine archaeological sites in Mexico for the presence of mycobacteria and we
could isolate forty-five nontuberculous mycobacteria (NTM). These were isolated from biofilms using selective
media containing different antibiotics and dyes. Identification of the isolated mycobacteria was carried out, first, by
a molecular identification by means of a mycobacteria-specific PCR using bacterial lysates of the acid-fast bacilli
followed by species identification by comparing of three molecular markers: genes rrs (
16SrRNA),
hsp65 and
rpoB.
Furthermore, the physiographic data of the archaeological zones under study was related to the number of acid-fast
microorganisms using a univariate analysis of variance. From the 45 isolated mycobacteria, 21 were
Mycobacteroides
chelonae; seven,
Mycobacteroides abscessus; five,
Mycolicibacterium flavescens; four,
Mycobacterium alvei; two,
Mycobacterium fortuitum; and six,
Mycobacterium sp. Most NTM were isolated from two archaeological sites:
25 from Guachimontones (Jalisco), and 13 from Atetelco (Estado de México). The statistical analysis showed that
environmental factors such as climate and the temperature-humidity-precipitation interaction had the greatest influence
on the presence of NTM in these archaeological zones.
REFERENCES
Adékambi, T., Colson, P. & Drancourt, M. (2003). rpoB-Based Identification of Nonpigmented and Late-Pigmenting Rapidly Growing Mycobacteria. J. Clin. Microbiol., 41(12), 5699-5708.DOI: 10.1128/JCM.41.12.5699- 5708.2003
Ascaso, C., Wierzchos, J., Souza-Egipsy, V. De los Rios, A. & Delgado Rodrigues, J. (2002). In situ evaluation of the biodeteriorating action of microorganisms and the effects of 103 biocides on carbonate rock of the Jeronimos Monastery (Lisbon). Int. Biodeter. Biodegr., 49, 1-12.DOI:10.1016/S0964-8305(01)00097-X
Cobos-Marín, L., Montes-Vargas, J., Rivera-Gutiérrez, S., Licea-Navarro, A., González-y-Merchand J. A. & Estrada-García, I. (2003). A novel multiplex-PCR for the rapid identification of Mycobacterium bovis in clinical isolates of both veterinary and human origin. Epidemiol. Infect., 130, 485-490.DOI: 10.1017/ S095026880300829X
Falkinham, J. O. (2009a). Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. J. of App. Microbiol., 107, 356-367.DOI: 10.1111/j.1365-2672.2009.04161.x
Falkinham, J. O. (2009b).The Biology of environmental mycobacteria. Environ. Microbiol. Rep., 1(6), 477- 487.DOI: 10.1111/j.1758-2229.2009.00054.x
Falkinham, J. O. (2015). Environmental sources of nontuberculous mycobacteria. Clin. Chest. Med., 36, 35-41.DOI: 10.1016/j.ccm.2014.10.003
Garrett, T.R., Bhakoo, M. & Zhang, Z. (2008). Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci., 18, 1049- 1056. DOI: 10.1016/j.pnsc.2008.04.001
González-y-Merchand, J. A., Colston, M. J. & Cox, R. A. (1996). The rRNA operon of Mycobacterium smegmatis and Mycobacterium tuberculosis comparison of promoter elements and of neighbouring upstream genes. Microbiol., 142, 667-674. DOI: 10.1099/13500872-142-3-667
Gupta, R. S., Lo, B. & Son, J. (2018). Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Front. Microbiol., 9, 1-41.DOI:10.3389/fmicb.2018.00067
Johnson, M. M. & Odell, J. A. (2014). Nontuberculous mycobacterial pulmonary infections. J. Thorac. Dis., 6(3), 210–220. DOI: 10.3978/j.issn.2072- 1439.2013.12.24
Kieser, K. J. & Rubin, E. J. (2014). How sisters grow apart: mycobacterial grow and division. Nat. Rev. Microbiol., 12, 550-562. DOI: 10.1038/nrmicro3299
Kirschner, R. A., Parker, B. C. & Falkinham, J. O. (1999). Humic and fulvic acids stimulate the growth of Mycobacterium avium. FEMS Microbiol. Ecol., 30, 327-332.DOI:10.1111/j.1574-6941.1999.tb00660.x
Kusumi, A., Shu-Li, X., & Katayama, Y. (2011). Mycobacteria isolated from Angkor monument sandstones grow chemolithoautotrophically by oxidizing elemental sulfur. Front in Microbiol., 2, 1-7.DOI: 10.3389/ fmicb.2011.00104
Manzoor, S. E., Lamber, P. A., Griffiths, P. A., Gill, M. J. & Fraise, A. P. (1999). Reduced glutaraldehyde susceptibility in Mycobacterium chelonae associated with altered cell wall polysaccharides. J. Antimicrob. Chemother., 43,759-765. DOI:10.1093/jac/43.6.759
McNamara, C. J., Perry IV, T. D., Bearce, K. A., Hernández- Duque, G. & Mitchell, R. (2006). Epilithic and Endolithic Bacterial Communities in Limestone from a Maya Archaeological Site. Microb. Ecol., 51(1), 51- 64. DOI: 10.1007/s00248-005-0200-5.
Pavlik, I., Kazda, J. & Falkinham, IIIJ.O. (2010). Environments Providing Favourable Conditions for the Multiplication and Transmission of Mycobacteria. En J. Kazda et al. (eds.), The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health, (pp. 89-97) New York: Springer. DOI: 10.1007/978-1-4020-9413- 2 5
PRASITE, 2018, Identification of Mycobacteria, http://app. chuv.ch/prasite.
Romaní, A. M., Found K., Artiagas J., Schwartz T., Sabater S. & Obst U. (2008). Relevance of polymeric matrix enzymes during biofilm formation. Microb. Ecol., 56, 427-436.DOI: 10.1007/s00248-007-9361-8
Sareen, M. & Khuller, G. K. (1990). Cell wall and membrane changes associated with ethambutol resistance in Mycobacterium tuberculosis H37Ra. Antimicrob. Agents Chemother, 34(9), 1773-1776. DOI: 10.1128/ AAC.34.9.1773
Telenti, A., Marchesi F., Balz, M., Bally, F., Bottger E. C. & Bodmer, T. (1993). Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J. Clin. Microbiol., 31, 175-178.DOI: 0095-1137/93/020175
Thorel, M.F., Falkinham, J. O. & Moreau, R. G. (2004). Environmental mycobacteria from alpine and subalpine habitats. FEMS Microbiol. Ecol, 49, 343- 347. DOI:10.1016/j.femsec.2004.04.016
Videla, H. A., Guiamet, P. S. & Gómez de Saravia, S. (2000). Biodeterioration of Mayan archaeological sites in the Yucatan Peninsula, Mexico. Int. Biodeter. Biodegr., 46(4), 335-341. DOI: 10.1016/S0964-8305(00)00106-2
Yang, L., Sinha, T., Carlson, T. K., Keiser, T. L., Torrelles, J. B. & Schlesinger, L. S. (2013). Changes in the mayor cell envelope components of Mycobacterium tuberculosis during in vitro grow. Glycobiology, 23(8), 926-934. DOI: 10.1093/glycob/cwt029