2019, Number 4
<< Back Next >>
Rev Mex Patol Clin Med Lab 2019; 66 (4)
Drug resistance of non-fermentation critical priority bacteria isolated in Chilpancingo, Guerrero
Barlandas‑Rendón NRE, Quintana‑Ponce S, Nájera‑Bello JA, Villanueva‑Pastrana N, Cruz‑Navarrete E, Maya‑Rodríguez PA, Torres‑Guzmán F
Language: Spanish
References: 16
Page: 221-226
PDF size: 224.49 Kb.
ABSTRACT
Introduction: Bacterial resistance to antibiotics is considered a global health problem that is gradually increased. Non-fermenting strains such as
Acinetobacter baumannii and
Pseudomona aeruginosa resistant to carbapenems, and Stenotrophomonas maltophilia resistant to sulfamethoxazole/trimethoprim, are characterized by multi-resistance patterns that limit therapeutic options.
Objective: Identify the antimicrobial resistance profile of critically-priority non-fermenting microorganisms isolated in Chilpancingo, Guerrero.
Material and methods: This research was conducted with isolated strains at the «Dr. Raymundo Abarca Alarcón» General Hospital (HGRAA) and the BIOCLIN Laboratory, in Chilpancingo, Gro., Mexico, during 2018. The VITEK 2 Compact (HGRAA) automated equipment and the MicroScan system (BIOCLIN) were used for bacterial identification, taking into view the guidelines of document M100 2019 of the Clinical & Laboratory Standards Institute. Colistin resistance screening was performed on 16 strains of
P. aeruginosa.
Results: Out of a total of 4,080 isolations in 2018, 166 (4.1%) were isolations recovered as non-fermenting strains previously described; of which 128 (77.1%)
P. aeruginosa, 18 (10.8%)
S. maltophilia and 20 (12.0%)
A. baumannii. Was found that
P. aeruginosa, exhibited significant resistance for levofloxacin (LVX) with 46.2% and 20.8% for meropenem (MEM); for
A. baumannii a 50.0% resistance against amikacin (AMK) was identified with a similar resistance for tazobactam (TZP). While
S. maltophilia presented 25.0% resistance against sulfamethoxazole /trimethoprim (STX), and intermediate resistance for LVX. One strain of
P. aeruginosa was resistant to colistin.
Conclusion: in Chilpancingo, Guerrero, were found phenotypes of non-fermenting bacteria, considered by WHO to be epidemiological alert and critical priority.
REFERENCES
Rodríguez-Noriega E, León-Garnica G, Petersen-Morfín S, Pérez-Gómez H, González-Díaz E, Morfín-Oter R. La evolución de la resistencia bacteriana en México, 1973-2013. Biomédica. 2014; 34 (Supl. 1): 181-190.
López-Galván M. Frecuencia de bacterias patógenas su patrón de sensibilidad antibiótico en el HGR no 25 en relación con el cuadro básico de medicamentos [Tesis de licenciatura]. Ciudad de México: Universidad Nacional Autónoma de México. Facultad de Estudios Superiores Zaragoza; 2013. pp. 2-23.
Organización Mundial de la Salud. La OMS publica la lista de las bacterias para las que se necesitan urgentemente nuevos antibióticos. Ginebra, Suiza: Organización Mundial de la Salud; 2017. pp. 1-11.
Pérez-Faraldo B, González-Isla F. Infecciones por bacilos gramnegativos no fermentadores: agentes etiológicos de infecciones asociadas a la atención sanitaria. Correo Científico Médico. 2017; 21 (4): 1197-1200.
Íñigo-Pestaña M, Del Pozo J. Infecciones por bacilos Gram negativos no fermentadores: Pseudomona aeruginosa, Acinetobacter spp. y Stenotrophomonas maltophilia. Elsevier. 2018; 50: 2931-2940.
Fariñas MC, Martínez-Martínez L. Infecciones causadas por bacterias Gram negativas multirresistentes: enterobacterias, Pseudomonas aeruginosa, Acinetobacter baumannii y otros bacilos Gram negativos no fermentadores. Enfermedades Infecciosas y Microbiología Clínica. 2013; 31 (6): 402-409.
Paz-Zarza V, Mangwani-Mordani S, Martínez-Maldonado A, Álvarez-Hernández D, Solano-Gálvez S, Vázquez-López R. Pseudomonas aeruginosa: patogenicidad y resistencia antimicrobiana en la infección urinaria. Patogenia. 2019; 36 (2): 180-189.
Callejas-Díaz A, Fernández-Pérez C, Ramos-Martínez A, Múñez-Rubio E, Sánchez-Romero I, Vargas-Núñez JA. Impacto de la bacteriemia por Pseudomona aeruginosa en un hospital de tercer nivel: mortalidad y factores pronósticos. Medicina Clínica. 2019; 3 (152): 83-89.
Nicolau CJ, Oliver A. Carbapenemasas en especies del género Pseudomonas. Enfermedades Infecciones y Microbiología Clínica. 2010; 28 (1): 19-28.
Venegas-Múnera J, Roncancio-Villamil G, Jiménez-Quiceno J. Acinetobacter baumannii: importancia. CES Med. 2014; 28 (2): 233-246.
Barletta-Farías C, Pérez-Ponce LJ, Castro-Vega G, Pujol-Pérez M, Barletta del Castillo JE, Dueñas-Pérez Y. Acinetobacter baumannii multirresistente: un reto para la terapéutica actual. Medisur. 2018; 16 (2): 322-334.
Huertasa F, Lacayo-Pallais V, Isabel M. Neumonía por Stenotrophomonas maltophilia. Acta Méd Costarric. 2014; 56 (1): 27-30.
Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 29th ed. CLSI document M100. Clinical and Laboratory Standards Institute, Wayne, PA: 2018.
Garza-González E, Morfín-Otero R, Mendoza-Olazarán S, Bocanegra-Ibarias P, Flores-Treviño S, Rodríguez-Noriega E et al. A snapshot of antimicrobial resistance in Mexico. Results from 47 centers from 20 states during a six-month period. PLoS One. 2019; 14 (3): e0209865.
Garza-González E, Llaca-Díaz J, Bosques-Padilla F, González G. Prevalence of multidrug-resistant bacteria at a tertiary-care teaching hospital in México: special focus on Acinetobacter baumannii. Chemoterapy. 2010; 56: 275-279.
Biedenbach DJ, Giao PT, Hung Van P, Su Minh Tuyet N, Thi Thanh Nga T, Phuong DM et al. Antimicrobial-resistant Pseudomonas aeruginosa and Acinetobacter baumannii from patients with hospital-acquired or ventilator-associated Pneumonia in Vietnam. Clin Ther. 2016; 38 (9): 2098-2105.