medigraphic.com
SPANISH

Revista Médica Sinergia

Revista Médica Sinergia
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 01

<< Back Next >>

Revista Médica Sinergia 2020; 5 (01)

Role of nitric oxide in the pathophysiology of cerebral stroke

Fernández AS, Zeledón CN, Rojas JA
Full text How to cite this article

Language: Spanish
References: 17
Page: 339
PDF size: 139.87 Kb.


Key words:

nitric oxide, stroke, oxidative stress, neurorepair.

ABSTRACT

Multiple complex pathophysiological processes occur in cerebral stroke that determine primary and secondary brain damage. Nitric oxide plays a fundamental role in the pathophysiology of stroke, represents a primary component in its development and progression. It is closely related to the activation of the inflammatory cascade, the alteration of mitochondrial function, angiogenesis and neurogenesis. These last two processes are fundamental for post-stroke neuroreparation, which is why they have been widely studied. The three production routes of nitric oxide are involved. Nitric oxide can act as a damaging or protective agent depending on where it is produced.


REFERENCES

  1. Liu R, Geng P, Ma M, Yu S, Wang X, Zhang W, Di H. Association between endothelial nitric oxide synthase gene polymorphism (T-786C) and ischemic stroke susceptibility: a meta-analysis. International Journal of Neuroscience. 2014 01 16;124(9):642-651. https://doi.org/10.3109/00207454.2013.873978

  2. Wang Z, Chen G, Chen Z, Mou R, Feng D. The role of nitric oxide in stroke. Medical Gas Research. 2017;7(3):194. https://doi.org/10.4103/2045-9912.215750

  3. Vijayan M, Reddy PH. Stroke, Vascular Dementia, and Alzheimer's Disease: Molecular Links. J Alzheimers Dis JAD. 06 de 2016;54(2):427-43. https://doi.org/10.3233/JAD-160527

  4. Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nature Reviews Neuroscience. 2017 05 18;18(7):419- 434. https://doi.org/10.1038/nrn.2017.48

  5. Nash KM, Schiefer IT, Shah ZA. Development of a reactive oxygen species-sensitive nitric oxide synthase inhibitor for the treatment of ischemic stroke. Free Radic Biol Med. 01 de 2018;115:395-404. https://doi.org/10.1016/j.freeradbiomed.2017.12.027

  6. Toth P, Tarantini S, Csiszar A, Ungvari Z. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. American Journal of Physiology-Heart and Circulatory Physiology. 2017 01 01;312(1):H1-H20. https://doi.org/10.1152/ajpheart.00581.2016

  7. Yagami T, Koma H, Yamamoto Y. Pathophysiological Roles of Cyclooxygenases and Prostaglandins in the Central Nervous System. Mol Neurobiol. 2016;53(7):4754-71. https://doi.org/10.1007/s12035-015-9355-3

  8. Katusic ZS, Austin SA. Neurovascular Protective Function of Endothelial Nitric Oxide􀀃 - Recent Advances. Circ J Off J Jpn Circ Soc. 24 de junio de 2016;80(7):1499-503. https://doi.org/10.1253/circj.CJ-16-0423

  9. Liu H, Li J, Zhao F, Wang H, Qu Y, Mu D. Nitric oxide synthase in hypoxic or ischemic brain injury. Reviews in the Neurosciences. 2015 01 01;26(1). https://doi.org/10.1515/revneuro-2014-0041

  10. Wei LK, Au A, Menon S, Griffiths LR, Kooi CW, Irene L, Zhao J, Lee C, Alekseevna AM, Hassan MRA, Aziz ZA. Polymorphisms of MTHFR , eNOS , ACE , AGT , ApoE , PON1 , PDE4D , and Ischemic Stroke: Meta-Analysis. Journal of Stroke and Cerebrovascular Diseases. 2017 Nov;26(11):2482- 2493. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.05.048

  11. Ji J, Xiang P, Li T, Lan L, Xu X, Lu G, Ji H, Zhang Y, Li Y. NOSH-NBP, a Novel Nitric Oxide and Hydrogen Sulfide- Releasing Hybrid, Attenuates Ischemic Stroke-Induced Neuroinflammatory Injury by Modulating Microglia Polarization. Frontiers in Cellular Neuroscience. 2017 05 26;11. https://doi.org/10.3389/fncel.2017.00154

  12. Narne P, Pandey V, Phanithi PB. Role of Nitric Oxide and Hydrogen Sulfide in Ischemic Stroke and the Emergent Epigenetic Underpinnings. Molecular Neurobiology. 2018 06 20;56(3):1749- 1769. https://doi.org/10.1007/s12035-018-1141-6

  13. Mizuma A, Yenari MA. Anti-Inflammatory Targets for the Treatment of Reperfusion Injury in Stroke. Frontiers in Neurology. 2017 09 07;8. https://doi.org/10.3389/fneur.2017.00467

  14. Garry P, Ezra M, Rowland M, Westbrook J, Pattinson K. The role of the nitric oxide pathway in brain injury and its treatment — From bench to bedside. Experimental Neurology. 2015 01;263:235- 243. https://doi.org/10.1016/j.expneurol.2014.10.017

  15. Zhang RL, Zhang ZG, Chopp M. Targeting nitric oxide in the subacute restorative treatment of ischemic stroke. Expert Opinion on Investigational Drugs. 2013 04 18;22(7):843- 851. https://doi.org/10.1517/13543784.2013.793672

  16. Ginsberg MD. The cerebral collateral circulation: Relevance to pathophysiology and treatment of stroke. Neuropharmacology. 2018 05;134:280-292. https://doi.org/10.1016/j.neuropharm.2017.08.003

  17. Li S, Wang Y, Jiang Z, Huai Y, Liao JK, Lynch KA, Zafonte R, Wood LJ, Wang QM. Impaired Cognitive Performance in Endothelial Nitric Oxide Synthase Knockout Mice After Ischemic Stroke. American Journal of Physical Medicine & Rehabilitation. 2018 07;97(7):492- 499. https://doi.org/10.1097/phm.0000000000000904




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Revista Médica Sinergia. 2020;5