2019, Number 4
<< Back Next >>
Acta Pediatr Mex 2019; 40 (4)
The importance of genetic diagnosis in severe combined immunodeficiencies
Saucedo-Aparicio AG, Espinosa-Padilla SE, López-Jasso F, Meza VR, Rivera-Lizárraga DA, Bustamante-Ogando JC
Language: Spanish
References: 45
Page: 234-251
PDF size: 880.46 Kb.
ABSTRACT
There are more than 300 primary immunodeficiencies caused by genetic defects in
the immune system. Among them, there is a group known as severe combined immunodeficiency,
causing abnormalities in both cellular and humoral adaptive immunity.
Severe combined immunodeficiency is a medical emergency due to the high mortality
without treatment. Mutations in different genes can cause severe combined immunodeficiency,
with similar clinical features. Obtaining a specific genetic diagnosis offers
advantages for clinical care and research. Approximately 70% of patients with severe
combined immunodeficiency in Latin America do not have a confirmed genetic diagnosis;
therefore, the clinical care for these patients may be suboptimal. The purpose of
this paper is to review and present current options for the genetic diagnosis of severe
combined immunodeficiency and to discuss advantages, limitations, and challenges
of improving genetic diagnosis. Although there have been significant improvements in
recent years, it is necessary to make more accessible the sequencing tools for genetic
diagnosis of severe combined immunodeficiency in Mexico and Latin America, in addition
to increase knowledge about these tools among primary care physicians, mainly
pediatricians. Genetic diagnosis should not be considered a luxury or merely useful
for research, but as a clinical tool that may improve the care of patients with severe
combined immunodeficiencies and their families.
REFERENCES
Picard C, et al. Primary immunodeficiency diseases: an update on the Classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015. J Clin Immunol 2015;35(8):696- 726. http://doi.org/10.1007/s10875-015-0201-1
Stiehm RE, et al. Stiehm's Immune Deficiencies. 1ed Phildelphia: Elsevier, 2014;144-66.
Bousfiha A, et al. The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies. J Clin Immunol 2018;38(1):129-43. http://doi.org/10.1007/s10875-017- 0465-8
Buckley RH, et al. Human severe combined immunodeficiency:genetic, phenotypic, and functional diversity in one hundred eight infants. J Pediatr 1997;130(3):378-87.
Cossu F. Genetics of SCID. Ital J Pediatr 2010;15;36:76. http://doi.org/10.1186/1824-7288-36-76
Fischer A, et al. Severe combined immunodeficiencies and related disorders. Nat Rev Dis Primers 2015;1:15061. http://doi.org/10.1038/nrdp.2015.61
Coria-Ramírez E, et al. Panorama epidemiológico de las inmunodeficiencias primarias en México. Rev Alerg Mex 2010;57(5):159-63.
Hernández-Nieto L. Estudio descriptivo de la evolución de las complicaciones por vacunación e BCG en pacientes con inmunodeficiencia combinada severa en el Instituto Nacional de Pediatría en los últimos 39 años. Tesis de posgrado. Instituto Nacional de Pediatría. Ciudad de México: Universidad Nacional Autónoma de México, 2010. http://189.203.43.34:8180/bitstream/ 20.500.12103/755/1/Tesis2010_30.pdf>.
Marciano BE, et al. BCG vaccination in patients with severe combined immunodeficiency: complications, risks, and vaccination policies. J Allergy Clin Immunol 2014;133(4):1134- 41. http://doi.org/10.1016/j.jaci.2014.02.028
Gennery AR, et al. Diagnosis of severe combined immunodeficiency. J Clin Pathol 2001;54:191-195. http://doi. org/10.1136/jcp.54.3.191
Kwan A, et al. History and current status of newborn screening for severe combined immunodeficiency. Semin Perinatol 2015;39(3):194-205 http://doi.org/10.1053/j. semperi.2015.03.004
Contreras-Verduzco A, et al. Diagnóstico oportuno de la inmunodeficiencia combinada grave (SCID) a través del tamiz neonatal. Rev Alerg A Ped 2014;3(2):48-56.
Conley ME, et al. Discovery of single-gene inborn errors of immunity by next generation sequencing. Curr Opin Immunol 2014;30:17-23 http://doi.org/10.1016/j. coi.2014.05.004
Shendure J, et al. DNA sequencing at 40: past, present and future. Nature 2017;19;550(7676):345-353 http://doi. org/10.1038/nature24286
Nijman IJ, et al. Targeted next-generation sequencing: a novel diagnostic tool for primary immunodeficiencies. J Allergy Clin Immunol 2014;133(2):529-534. http://doi. org/10.1016/j.jaci.2013.08.032
Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP). Dirección URL: .
Keller B, et al. Early onset combined immunodeficiency and autoimmunity in patients with loss-of-function mutation in LAT. J Exp Med 2016;213(7):1185-99. http://doi. org/10.1084/jem.20151110
Bacchelli C, et al. Mutations in linker for activation of T cells (LAT) lead to a novel form of severe combined immunodeficiency. J Allergy Clin Immunol 2017;139(2):634-642. http://doi.org/10.1016/j.jaci.2016.05.036
Lee YN, et al. A systematic analysis of recombination activity and genotype-phenotype correlation in human recombination- activating gene 1 deficiency. J Allergy Clin Immunol 2015;133(4):1099-1108. http://doi.org/10.1016/j. jaci.2013.10.007
Gaspar HB, et al. How I treat severe combined immunodeficiency. Blood 2013;122(23):3749-3758. http://doi. org/10.1182/blood-2013-02-380105
Ramakrishnan KA, et al. Precision Molecular Diagnosis Defines Specific Therapy in Combined Immunodeficiency with Megaloblastic Anemia Secondary to MTHFD1 Deficiency. J Allergy Clin Immunol Pract 2016;4(6):1160-1166. http:// doi.org/10.1016/j.jaip.2016.07.014
Gatti RA, et al. Immunological reconstitution of sexlinked lymphopenic immunological deficiency. Lancet 1968;2(7583):1366-9. http://doi.org/10.1016/s0140- 6736(68)92673-1
Cavazzana M, Touzot F, Moshous D, Neven B, Blanche S, Fischer A,. “Stem cell transplantation for primary immunodeficiencies: the European experience.” Curr Opin Allergy Clin Immunol. 2014 Dec;14(6):516-20 http://doi.org/
Gennery AR, et al. Transplantation of hematopoietic stem cells and long-term survival for primary immunodeficiencies in Europe: Entering a new century, do we do better? J Allergy Clin Immunol 2010;126(3):602-10. http://doi. org/10.1016/j.jaci.2010.06.015
Wahlstrom JT, et al. Hematopoietic Stem Cell Transplantation for Severe Combined Immunodeficiency. Curr Pediatr Rep 2015;3(1):1-10. http://doi.org/10.1007/s40124-014- 0071-7
Olaya-Vargas A, et al. Trasplante de células progenitoras hematopoyéticas en pediatría: Una alternativa de tratamiento en inmunodeficiencias primarias. Rev Invest Clin 2005;57(2):324-332. http://www.scielo.org.mx/scielo. php?script=sci_arttext&pid=S0034-83762005000200028
Pai SY, et al. Transplantation outcomes for severe combined immunodeficiency. New Eng J Med 2014;371(5):434-46. http://doi.org/10.1056/NEJMoa1401177
Titman P, et al. Cognitive and behavioral abnormalities in children after hematopoietic stem cell transplantation for severe congenital immunodeficiencies. Blood 2008;112(9):3907-3913. http://doi.org/10.1182/ blood-2008-04-151332
Booth C, et al. Treating Immunodeficiency through HSC Gene Therapy. Trends Mol Med 2016;22(4):317-327. http://doi.org/10.1016/j.molmed.2016.02.002
Chinen J, et al. Successes and risks of gene therapy in primary immunodeficiencies. J Allergy Clin Immunol 2004;113(4):595-603. http://doi.org/10.1016/j. jaci.2004.01.765
Fischer A, et al. Gene therapy for primary immunodeficiencies. Clin Genet 2015;88(6):507-15. http://doi. org/10.1111/cge.12576
ThrasherAJ, et al. Evolving gene therapy in primary immunodeficiency. Mol Ther 2017;25(5):1132-1141. http://doi. org/10.1016/j.ymthe.2017.03.018
Touzot F, et al. Faster T-cell development following gene therapy compared with haploidentical HSCT in the treatment of SCID-X1. Blood 2015;125(23):3563-3569. http://doi. org/10.1182/blood-2014-12-616003
Human Gene Database. [Consulta: diciembre 2108]. Dirección URL: .
Kohn D, et al. How we manage adenosin deaminasedeficient severe combined immunodeficieny (ADA SCID). J Clin Immunol 2017;37(4):351-356. http://doi. org/10.1007/510875-017-0373-y.
Aiuti A, et al. Gene Therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 2009;360(5):447- 458. http://doi.org/10.1056/NEJMoa0805817
Cicalese MP, et al. Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine deaminase deficiency. Blood 2016;128(1):45-54. http://doi. org/10.1182/blood-2016-01-688226
Sauera AV, et al. Progress in gene therapy for primary immunodeficiencies using lentiviral vectors. Curr Opin Allergy Clin Immunol 2014;14(6):527-534. http://doi.org/10.1097/ ACI.0000000000000114
Ferrua F, et al. Twenty-five years of gene therapy for ADASCID: from “bubble boy” to an approved drug. Human Gene Therapy 2017;28(11):972-981. http://doi.org/10.1089/ hum.2017.175
Gennery, Andrew. “Hematopoietic Stem Cell Transplantation for Primary Immunodeficiency.” Kathleen E. Sullivan, E. Richard Stiehm. Stiehm's Immune Deficiencies Academic Press. Elsevier, 2014. 1028-1045. http://doi.org/
Mamcarz E, et al. Lentiviral gene therapy combined with low-dose busulfan in infants with SCID-X1. New Eng J Med 2019;380(16):1525-34. http://doi.org/10.1056/ NEJMoa1815408
Hacein-Bey-Abina S, et al. Sustained correction of X-linked severe combined immunodeficieny by ex vivo gene therapy. New Eng J Med 2002;346(16):1185-93. http://doi. org/10.1056/NEJMoa012616
McCormick MP, et al. Activation of the T-cell oncogene LMO2 after gene therapy for X-linked severe combined immunodeficiency. New Eng J Med 2004;350(9):913-22. http://doi.org/10.1056/NEJMra032207
Sociedad Latinoamericana de Inmunodeficiencias. Dirección URL: .
Notarangelo LD, et al. Is it necessary to identify molecular defects in primary immunodeficiency disease? J Allergy Clin Immunol 2008;122(6):1069-1073. http://doi. org/10.1016/j.jaci.2008.08.038