2019, Number 2
<< Back Next >>
Revista Cubana de Salud y Trabajo 2019; 20 (2)
Basic causes of failures applied to risk analysis in ionizing radiation medicine practices
Amador BZ, Torres VA
Language: Spanish
References: 24
Page: 11-18
PDF size: 366.52 Kb.
ABSTRACT
The estate of the art of failure causes applied to incidents or nearmisses,
in ionizing radiation medicine practices, shows parceled
approaches and that does not cover all possible influencing areas in the
events. The conformation of standardized list of failure causes for the
risk analysis in these medical practices allows the adoption of measures
for improvement in the quality and safety management system. Its
application to the failure mode and effects analysis (FMEA) as a
proactive method and also during using a reactive method inside an
incident data base facilitates the importance determination of human
errors, equipment failures, lack of safety culture, etc., whose present
like causes, and the definition of the most effective action will be
adopted by managers. In the other side, this application also allows the
terminology standardization in the basic causes and the blending
among the analysis methods. The basic causes by influencing area of international use, but enlarged and adapted to the reference medical
practices, it is presented following the numerical codification used in
adverse events and near-misses data bases. There is illustrated its using
by experts in the risk analysis with the code SECURE-MR-FMEA 3.0.
REFERENCES
International Atomic Energy Agency. Call for Action Platform. Bonn; 2012 [Internet]. Disponible en: https://rpop.iaea.org/RPOP/RPoP/Content/Additional Resources/Bonn_Call_for_Action_ Platform/ index.htm.
Oficina Nacional de Normalización. NC ISO 31010. Gestión del riesgo. Técnicas de apreciación del riesgo. La Habana: ONN; 2015.
Oficina Nacional de Normalización. NC ISO/TR 31004. Gestión del riesgo. Implementación de la norma NC ISO 31OOO. La Habana: ONN; 2016.
Oficina Nacional de Normalización. NC ISO 73. Gestión del riesgo. Vocabulario. La Habana: ONN; 2015.
International Standard Organization, ISO 31000: Risk management- Guidelines. 2nd ed. 2018-02; 2018.
International Nuclear Safety Group. A framework for an integrated risk informed decision making process; INSAG-25; 2011.
Organización Internacional de Energía Atómica. Un sistema de retroalimentación sobre la experiencia derivada de sucesos ocurridos en instalaciones nucleares. Guía de seguridad N° NS-G-2.11; 2012.
Deufel Cl, Mclemore LB, Fong LE, Classic KL, et al. Patient safety is improved with an incident learning system – Clinical evidence in brachyther-apy. Radiotherapy and Oncology. 2017;125:94-100.
Zheng Y, Johnson R, Zhao L, Ramirez E, Rana S, Singh H, Chackom, Fifty-seventh annual meeting of the American Association of Physicists in Medi-cine. 2015;42(6):3691. WE-G-BRA-01: Patient safety and treatment quality improvement through incident learning: Experience of a non-academic proton therapy center.
Williams MV. Improving patient safety in radio-therapy by learning from near misses, incidents and errors. The British Journal of Radiology. 2007;80: 297-301.
SaifulHuq M. Thereport of Task Group 100 of the AAPM: Application of risk analysis methods to ra-diation therapy quality management. Med Phys. 2016;43(7).
Da Silva FC. Failure mode and effects analysis based risk profile assessment for stereotactic ra-diosurgery programs at three cancer centers in Bra-zil. Medical Physics. 2016;43(1).
Safety in Radiation Oncology. SAFRON [Internet] [citado 24 Feb 2017]. Disponible en: https://rpop.iaea.org/SAFRON/Default.aspx.
Cooke D, Dubetz M. Health Technology Assess-ment Unit. Reference guide for learning from inci-dents in radiation treatment. 2006; HTA Initiative Series N. 22.
Chang A, Schyve PM, Croteau RJ, O’leary DS, Loeb JM. The JCAHO patient safety event taxon-omy: a standardized terminology and classification schema for near misses and adverse events, Inter-national Journal for Quality in Health Care. 2005; 17(2):95-105.
Dunscombe PB, Ekaette EU, Lee Robert C, Cooke DL. Taxonometric applications in radiotherapy in-cident analysis. Int J Radiation Oncology Biol Phys. 2008;71(1) Suppl: S200-S203.
Mitchell RJ, Williamson A, Molesworth B. Appli-cation of a human factors classification framework for patient safety to identify precursor and contrib-uting factors to adverse clinical incidents in hospi-tal. Applied Ergonomics. 2016;52:185-95.
Ministerio de Ciencia, Tecnología y Medio Am-biente. Centro Nacional de Seguridad Nuclear. Guía expectativas del organismo regulador sobre la cultura de seguridad en las organizaciones que rea-lizan actividades con fuentes de radiación ionizan-te. Rev. 00/15. 2015; Resolución N° 3/2015. La Habana: Citma; 2015.
Torres A. Manual del usuario SECURE-MR-FMEA. Programa de análisis de riesgo basado en matriz de riesgo y FMEA. La Habana; 2017.
Torres A, Rivero JJ, Montes de Oca J, et al. Moni-toreo dinámico de riesgo empleando matriz de riesgo en prácticas médicas con radiaciones ioni-zantes. Revista Nucleus. 2016;59:29-33.
Torres A, Alonso JL, Alfonso R, Jacas M, Alonso D, Morales JL. Evaluación de riesgo de la práctica de radioterapia con rayos X de kilovoltaje. Revista Nucleus. 2017(61):21-5.
Rodríguez D, Torres A, Soria MA, Ayra FE. Eva-luación de riesgos asociados a la producción de ge-neradores de Molibdeno-99/Tecnecio-99m. Revista Nucleus. 2017(61):26-31.
Bomanji JB, Novruzov F, Vinjamuri S. Radiation accidents and their management: emphasis on the role of nuclear medicine professionals. Nuclear Medicine Communications. 2014;35(10).
Xu AY, Bhatnagar J, Bednarz G, Flickinger J, et al. Failure modes and effects analysis (FMEA) for Gamma knife radiosurgery. J Appl Clin Med Phys. 2017;18(6): 152-68.