2019, Number 1
<< Back Next >>
CorSalud 2019; 11 (1)
Basal autonomic balance and during the isometric exercise in young people with different cardiovascular reactivity
Rodríguez PA, Guirado BO, González PHJ, Ballesteros HM, Casas BJC, Cárdenas RAE
Language: Spanish
References: 35
Page: 11-20
PDF size: 689.90 Kb.
ABSTRACT
Introduction: The autonomic nervous system plays an important role in cardiovascular readjustments to exercise. In cardiovascular hyperreactivity there is a
greater sensitivity of the sympathetic system to different stressors.
Objectives: To determine the characteristics of cardiac autonomic control in
young adults with different degrees of cardiovascular reactivity under basal
conditions and during isometric exercise.
Method: The sample consisted of 97 individuals of both sexes, and was divided
into three groups: normoreactive, hyperreactive and with hypertensive response,
according to the pressor response to weight-bearing tests. The individuals underwent a complete study of heart rate variability at rest and during isometric test.
The frequency domain for the variables was: low, high, low/high resting ratio, and
the parameters of Poincaré plots at rest and during exercise (values of standard
deviation 1 [SD1], 2 [SD2], and the reason between them).
Results: Under basal conditions, hyperreactive individuals with a hypertensive
response had a sympathetic predominance over cardiac function and lower heart
rate variability. During the isometric exercise SD1 and SD2 axes values decreased
in all groups and SD1/SD2 ratio decreased in normoreactive individuals with hypertensive response; but it was hardly modified in those hyper-reactive.
Conclusions: Individuals with cardiovascular hyperreactivity have a prior autonomic imbalance under basal conditions and a reduction of autonomic vagal
modulation during exercise that may favor the development of arterial hypertension.
REFERENCES
McCraty R, Shaffer F. Heart rate variability: New perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob Adv Health Med. 2015;4(1):46-61.
Grassi G, Mark A, Esler M. The sympathetic nervous system alterations in human hypertension. Circ Res. 2015;116(6):976-90.
Loni SA. Valsalva ratio: a measure of stress in first year medical students. Int J Res Med Sci. 2015;3(7):1599-604.
Shaffer F, Ginsberg JP. An Overview of Heart Rate Variability Metrics and Norms. Front Public Health [Internet]. 2017 [citado 10 Sep 2018];5:258. Disponible en: https://www.frontiersin.org/article/10.3389/fpubh.2017.00258
Longin E, Dimitriadis C, Shazi S, Gerstner T, Lenz T, König S. Autonomic nervous system function in infants and adolescents: impact of autonomic tests on heart rate variability. Pediatr Cardiol. 2009;30(3):311-24.
Hilz MJ, y col. Valsalva maneuver unveils central baroreflex dysfunction with altered blood pressure control in persons with a history of mild traumatic brain injury. BMC Neurol [Internet]. 2016 [citado 12 Sep 2018];16:61. Disponible en: https://bmcneurol.biomedcentral.com/track/pdf/10.1186/s12883-016-0584-5
Chelimsky G, Ialacci S, Chelimsky TC. Autonomic testing in healthy subjects: preliminary observations. Clin Auton Res. 2013;23(2):113-6.
Hilz MJ, Dütsch M. Quantitative studies of autonomic function. Muscle Nerve. 2006;33(1):6-20.
Presciuttini B, Duprez D, De Buyzere M, Clement DL. How to study sympatho-vagal balance in arterial hypertension and the effect of antihypertensive drugs? Acta Cardiol. 1998;53(3):143-52.
Švigelj V, Šinkovec M, Avbelj V, Trobec R, Gaspar L, Petrovič D, et al. Cardiovagal and adrenergic function tests in unilateral carotid artery stenosis patients – A Valsalva manoeuvre tool to show an autonomic dysfunction? Wien Klin Wochenschr. 2016;128(13-14):504-12.
Benet Rodríguez M, Espinosa Chang LJ, Apollinaire Pennini JJ, León Regal ML. Hiperreactividad cardiovascular en la predicción de la hipertensión arterial en la comunidad. Medisur [Internet]. 2006 [citado 12 Sep 2018];4(3):33-41. Disponible en: http://www.medisur.sld.cu/index.php/medisur/article/view/218/4945
Benet Rodríguez M, Morejón Giraldoni A. Hiperreactividad cardiovascular: un marcador de riesgo poco conocido en la predicción de la hipertensión arterial. Premio Anual de la Salud 2012 [Internet]. 2013 [citado 9 Sep 2018]. Disponible en: http://files.sld.cu/boletincnscs/files/2013/02/6-hiperreactividad-cardiovascular.pdf
Paz Basanta HA, Guirado Blanco O, González Paz H, Curbelo Hernández H, de Armas Sáez M, Ventura Espina JL. Nuevos criterios para tratar la hipertensión arterial ligera en el nivel primario de salud. Medicentro [Internet]. 1998 [citado 10 Sep 2018];2(3). Disponible en: http://www.medicentro.sld.cu/index.php/medicentro/article/view/41/1977
Assessment: Clinical autonomic testing report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 1996;46(3):873-80.
Palma Gámiz JL, Arribas Jiménez A, González Juanatey JR, Marín Huerta E, Martín-Ambrosio ES. Guías de práctica clínica de la Sociedad Española de Cardiología en la monitorización ambulatoria del electrocardiograma y presión arterial. Rev Esp Cardiol. 2000;53(1):91-109.
Jørgensen RM, Abildstrøm SZ, Levitan J, Kobo R, Puzanov N, Lewkowicz M, et al. Heart Rate Variability Density Analysis (Dyx) and prediction of long-term mortality after acute myocardial infarction. Ann Noninvasive Electrocardiol. 2016;21(1):60-8.
Sassi R, Cerutti S, Lombardi F, Malik M, Huikuri HV, Peng CK, et al. Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace. 2015;17(9):1341-53.
Shaffer F, Venner J. Heart Rate Variability Anatomy and Physiology. Biofeedback. 2013;41(1):13-25.
Wu D, Xu L, Abbott D, Hau WK, Ren L, Zhang H, et al. Analysis of beat-to-beat blood pressure variability response to the cold pressor test in the offspring of hypertensive and normotensive parents. Hypertens Res. 2017;40(6):581-9.
León Regal ML, Benet Rodríguez M, Mass Sosa LA, Willians Serrano S, González Otero LH, León Valdés A. La hiperreactividad cardiovascular como factor predictivo de la hipertensión arterial en la mujer. 2016 [Internet]. 2016 [citado 11 Sep 2018];14(3):269-79. Disponible en: http://medisur.sld.cu/index.php/medisur/article/view/3095/2052
Greaney JL, Wenner MM, Farquhar WB. Exaggerated increases in blood pressure during isometric muscle contraction in hypertension: role for purinergic receptors. Auton Neurosci. 2015;188:51-7.
Orrego CM, Astudillo BV, Senior JM, Cuéllar F, Velásquez Ó, Velásquez M. Variabilidad de la frecuencia cardiaca y alteraciones del ritmo cardiaco asociados a la terapia con células progenitoras en enfermedad cardiovascular. Rev Colomb Cardiol. 2007;14(6):353-8.
Chu Duc H, Nguyen Phan K, Nguyen Viet D. A review of heart rate variability and its applications. APCBEE Procedia. 2013;7:80-5.
Lopes HF, Consolim-Colombo FM, Barreto-Filho JA, Riccio GM, Negrão CE, Krieger EM. Increased sympathetic activity in normotensive offspring of malignant hypertensive parents compared to offspring of normotensive parents. Braz J Med Biol Res. 2008;41(10):849-53.
Almeida LB, Peçanha T, Mira PAC, Souza LV, da Silva LP, Martinez DG, et al. Cardiac autonomic dysfunction in offspring of hypertensive parents during exercise. Int J Sports Med. 2017;38(14):1105-10.
Rodríguez Pena A, Guirado Blanco O, Paz González HJ, Cárdenas Rodríguez AE. Patrones hemodinámicos y respuesta al ejercicio isométrico en normotensos, prehipertensos e hipertensos; diferencias de género. Medicentro [Internet]. 2018 [citado 14 Sep 2018];22(3):228-37. Disponible en: http://www.medicentro.sld.cu/index.php/medicentro/article/view/2554/2219
dos Santos António AM, Cardoso MA, do Amaral JAT, de Abreu LC, Valenti VE. Cardiac autonomic modulation adjustments in isometric exercise. MedicalExpress [Internet]. 2015 [citado 15 Sep 2018];2(1):M150102. Disponible en: http://www.scielo.br/pdf/medical/v2n1/2318-8111-medical-02-01-20150102.pdf
Alegret JM, Beltrán-Debón R, La Gerche A, Franco-Bonafonte L, Rubio-Pérez F, Calvo N, et al. Acute effect of static exercise on the cardiovascular system: assessment by cardiovascular magnetic resonance. Eur J Appl Physiol. 2015;115(6):1195-203.
Weippert M, Behrens K, Rieger A, Stoll R, Kreuzfeld S. Heart rate variability and blood pressure during dynamic and static exercise at similar heart rate levels. PLoS One [Internet]. 2013 [citado 19 Sep 2018];8(12):e83690. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3862773/pdf/pone.0083690.pdf
González-Camarena R, Carrasco-Sosa S, Román-Ramos R, Gaitán-González MJ, Medina-Bañuelos V, Azpiroz-Leehan J. Effect of static and dynamic exercise on heart rate and blood pressure variabilities. Med Sci Sports Exerc. 2000;32(10):1719-28.
Michael S, Graham KS, Davis GM. Cardiac Autonomic Responses during Exercise and Post-exercise Recovery Using Heart Rate Variability and Systolic Time Intervals – A Review. Front Physiol [Internet]. 2017 [citado 19 Sep 2018];8:301. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447093/pdf/fphys-08-00301.pdf
Casadei B, Cochrane S, Johnsoton J, Conway J, Sleight P. Pitfalls in the interpretation of spectral analysis of the heart rate variability during exercise in humans. Acta Physiol Scand. 1995;153(2):125-31.
Mourot L, Bouhaddi M, Perrey S, Rouillon JD, Regnard J. Quantitative Poincaré plot analysis of heart rate variability: effect of endurance training. Eur J Appl Physiol. 2004;91(1):79-87.
Woo MA, Stevenson WG, Moser DK, Middlekauff HR. Complex heart rate variability and serum norepinephrine levels in patients with advanced heart failure. J Am Coll Cardiol. 1994;23(3):565-9.
Carrasco S, Gaitán MJ, González R, Yánez O. Correlation among Poincaré plot indexes and time and frequency domain measures of heart rate variability. J Med Eng Technol. 2001;25(6):240-8.