2019, Number 1
Next >>
CorSalud 2019; 11 (1)
Cardiovascular autonomic response during the Cuban dynamic weight-bearing test
Torres-Leyva M, Carrazana-Escalona R, Ormigó-Polo LE, Ricardo-Ferro BT, López-Galán E, Ortiz-Alcolea L, Sánchez-Hechavarría ME
Language: Spanish
References: 41
Page: 1-10
PDF size: 786.96 Kb.
ABSTRACT
Introduction: The dynamic weight-bearing test (WBT) is a Cuban isometric exercise, similar to the hand grip test, which is very useful to induce hemodynamic modifications to identify cardiovascular hyperreactivity in at-risk populations.
However, changes in the cardiovascular autonomic response during weight-bearing test are poorly understood.
Objectives: To determine the cardiovascular autonomic response during the
Cuban dynamic WBT.
Method: Quasi-experimental crossover trial with 16 healthy subjects; blood pressure and heart rate variability were assessed, 5 minutes before (rest) and during
the WBT (2 minutes for maneuver and 3 minutes for recovery), through the frequency (Fourier) and time-frequency (Wavelet) analysis of high-frequency (HF: 0.15-0.4 Hz) and low-frequency (LF: 0.04-0.15 Hz) bands, as well as temporal and
non-linear analysis (Shannon entropy) of the RR interval series.
Results: Although temporal indicators (SDNN, RMSSD, pNN50) showed no significant differences (p>0.05) nor the frequencies (LF, HF, LF/HF); we found an increase (p<0.05) in blood pressure and a significant decrease (p<0.05) in complexity
(entropy) in the WBT with respect to rest, associated with an HF peak and LF/HF
ratio at nearly 2 minutes reflected with the time-frequency methods.
Conclusions: There was a dynamic increase in the cardiovascular sympathetic
response during the WBT associated with a decrease in the complexity of this
physiological process, which is not evident with the traditional linear methods of
heart rate variability.
REFERENCES
Organización Mundial de la Salud. Preguntas y respuestas sobre la hipertensión [Internet]. Ginebra: OMS; 2015 [citado 31 Ago 2018]. Disponible en: https://www.who.int/features/qa/82/es/
Organización Mundial de la Salud. Información general sobre la hipertensión en el mundo. Una enfermedad que mata en silencio, una crisis de salud pública mundial [Internet]. Ginebra: OMS; 2013 [citado 31 Ago 2018]. Disponible en: http://apps.who.int/iris/bitstream/10665/87679/1/WHO_DCO_WHD_2013.2_spa.pdf?ua=1
Grassi G. Neuroadrenergic abnormalities in hypertension and hypertension-related cardiovascular disease. Hipertens Riesgo Vasc. 2013;30(2):70-4.
Mathias CJ. Autonomic diseases: clinical features and laboratory evaluation. J Neurol Neurosurg Psychiatry. 2003;74(Supl 3):31-41.
Medina Durango E. Pruebas de función autonómica. En: Cabrales Neira MF, Vanegas Cadavid DI, eds. Manual de métodos diagnósticos en electrofisiología cardiovascular. 1ra ed. Bogotá: Sociedad Colombiana de Cardiología y Cirugía Cardiovascular; 2006. p. 131-40.
Germán-Salló Z, Germán-Salló M. Non-linear methods in HRV analysis. Procedia Technology. 2016;22:645-51.
Mirescu SC, Ciocoiu AL, David L, Tarba C. Heart rate variability: a practical review for the beginner. Studia Universitatis Babeş-Bolyai. Biologia. 2017; 62(1):87-100.
Rodas G, PedretCarballido C, Ramos J, Capdevila L. Variabilidad de la frecuencia cardíaca: concepto, medidas y relación con aspectos clínicos (I). Arch Med Deporte. 2008;25(123):41-7.
Anónimo. Heart Rate Variability: Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing Electrophysiology. Circulation. 1996;93(5):1043-65.
Restrepo Jaramillo CA. Variabilidad de la frecuencia cardíaca: cambio de vocación para una prueba. En: Cabrales Neira MF, Vanegas Cadavid DI, eds. Manual de métodos diagnósticos en electrofisiología cardiovascular. 1ra ed. Bogotá: Sociedad Colombiana de Cardiología y Cirugía Cardiovascular; 2006. p. 93-7.
Billman GE, Huikuri HV, Sacha J, Trimmel K. An introduction to heart rate variability: methodological considerations and clinical applications. Front Physiol [Internet]. 2015 [citado 10 Sep 2018];6:55. Disponible en: https://www.frontiersin.org/articles/10.3389/fphys.2015.00055/full
Bravi A, Longtin A, Seely AJ. Review and classification of variability analysis techniques with clinical applications. Biomed Eng OnLine [Internet]. 2011 [citado 10 Sep 2018];10:90. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224455/pdf/1475-925X-10-90.pdf
Mancia G. Björn Folkow Award Lecture. The sympathetic nervous system in hypertension. J Hypertens. 1997;15(12):1553-65.
Esler MD, Thompson JM, Kaye DM, Turner AG, Jennings GL, Cox HS, et al. Effects of aging on the responsiveness of the human cardiac sympathetic nerves to stressors. Circulation. 1995;91(2):351-8.
Matthews EL, Greaney JL, Wenner MM. Rapid onset pressor response to exercise in young women with a family history of hypertension. Exp Physiol. 2017;102(9):1092-9.
O’Driscoll JM, Taylor KA, Wiles JD, Coleman DA, Sharma R. Acute cardiac functional and mechanical responses to isometric exercise in prehypertensive males. Physiol Rep [Internet]. 2017 [citado 11 Sep 2018];5(7):e13236. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5392522/pdf/PHY2-5-e13236.pdf
Watanabe K, Ichinose M, Tahara R, Nishiyasu T. Individual differences in cardiac and vascular components of the pressor response to isometric handgrip exercise in humans. Am J Physiol Heart Circ Physiol. 2014;306(2):251-60.
Garg R, Malhotra V, Dhar U, Tripathi Y. The isometric handgrip exercise as a test for unmasking hypertension in the offsprings of hypertensive parents. J Clin Diagn Res. 2013;7(6):996-9.
Ballesteros Hernández M, Guirado Blanco O, Alfonso Rodríguez J, Marrero Martínez JA, Fernández Caraballo D, Heredia Ruiz D. Concentraciones de oligoelementos y reactividad vascular en mujeres en edades fértiles y posmenopáusicas. Medicentro [Internet]. 2017 [citado 12 Sep 2018];21(4):316-22. Disponible en: http://www.medicentro.sld.cu/index.php/medicentro/article/view/2369/2082
León Regal ML, Benet Rodríguez M, Mass Sosa LA, Willians Serrano S, González Otero LH, León Valdés A. La hiperreactividad cardiovascular como factor predictivo de la hipertensión arterial en la mujer. Medisur [Internet]. 2016 [citado 12 Sep 2019];14(3):269-79. Disponible en: http://medisur.sld.cu/index.php/medisur/article/view/3095/2052
Sánchez Hechavarría ME, Rodríguez Gutiérrez LC, Rodríguez Nuviola J, Ortiz Alcolea L, Sarmiento González R. Relación entre la práctica de actividad física extraescolar y la hiperreactividad cardiovascular en adolescentes. Rev Cub Med Dep & Cul Fís [Internet]. 2016 [citado 13 Sep 2018];11(1). Disponible en: https://www.researchgate.net/publication/304953793_Relationship_between_the_practice_of_out_of_school_physical_activity_and_the_cardiovascular_hyperreactivity_in_adolescents
Benet Rodríguez M, Morejón Giraldoni A. Hiperreactividad cardiovascular: un marcador de riesgo poco conocido en la predicción de la hipertensión arterial. En: Consejo Nacional de Sociedades Científicas del Ministerio de Salud Pública de Cuba. Premio Anual de la salud 2012. 37 ed. La Habana: Ecimed; 2013. p-88-96.
Sabarimalai Manikandan M, Soman KP. A novel method for detecting R-peaks in electrocardiogram (ECG) signal. Biomed Signal Process Control. 2012;7(2):118-28.
Ramshur JT. Design, evaluation, and application of heart rate variability analysis software (HRVAS) [Tesis]. Memphis: The University of Memphis [Internet]; 2010 [citado 13 Sep 2018]. Disponible en: https://doi.org/10.13140/RG.2.2.33667.81444
Machado García A, Estévez Báez M, González Gómez H. Optimización de los métodos para estudiar la variabilidad de la frecuencia cardiaca y su aplicación a grupos de sujetos sanos y enfermos [Tesis]. Ciudad de La Habana: Universidad de La Habana [Internet]; 2008 [citado 13 Sep 2018]. Disponible en: http://tesis.sld.cu/index.php?P=DownloadFile&Id=555
Lydakis C, Momen A, Blaha C, Herr M, Leuenberger UA, Sinoway LI. Changes of elastic properties of central arteries during acute static exercise and lower body negative pressure. Eur J Appl Physiol. 2008;102(6):633-41.
Jones RI, Lahiri A, Cashman PM, Dore C, Raftery EB. Left ventricular function during isometric hand grip and cold stress in normal subjects. Heart. 1986;55(3):246-52.
Benet Rodríguez M, Apollinaire Pinnini JJ, Torres Ros J, Peraza Pons S. Reactividad cardiovascular y factores de riesgos cardiovasculares en individuos normotensos menores de 40 años. Rev Esp Salud Pública. 2003;77(1):143-50.
Goulopoulou S, Fernhall B, Kanaley JA. Developmental changes in hemodynamic responses and cardiovagal modulation during isometric handgrip exercise. Int J Pediatr [Internet]. 2010 [citado 14 Sep 2018];2010:153780. Disponible en: https://www.hindawi.com/journals/ijpedi/2010/153780/
Gladwell VF, Fletcher J, Patel N, Elvidge LJ, Lloyd D, Chowdhary S, et al. The influence of small fibre muscle mechanoreceptors on the cardiac vagus in humans. J Physiol. 2005;567(2):713-21.
Drew RC. Baroreflex and neurovascular responses to skeletal muscle mechanoreflex activation in humans: an exercise in integrative physiology. Am J Physiol Regul Integr Comp Physiol. 2017;313(6):654-9.
Iellamo F, Pizzinelli P, Massaro M, Raimondi G, Peruzzi G, Legramante JM. Muscle metaboreflex contribution to sinus node regulation during static exercise: insights from spectral analysis of heart rate variability. Circulation. 1999;100(1):27-32.
Bunsawat K, Baynard T. Cardiac autonomic modulation and blood pressure responses to isometric handgrip and submaximal cycling exercise in individuals with down syndrome. Clin Auton Res. 2016;26(4):253-60.
Naranjo Orellana J, De La Cruz Torres B. La entropía y la irreversibilidad temporal multiescala en el análisis de sistemas complejos en fisiología humana. Rev Andal Med Deporte. 2010;3(1):29-32.
Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis: a new measure of complexity loss in heart failure. J Electrocardiol. 2003;36(Supl 1):39-40.
Goldberger AL, Peng CK, Lipsitz LA. What is physiologic complexity and how does it change with aging and disease? Neurobiol Aging. 2002;23(1):23-6.
Baumert M, Czippelova B, Ganesan A, Schmidt M, Zaunseder S, Javorka, M. Entropy analysis of RR and QT interval variability during orthostatic and mental stress in healthy subjects. Entropy. 2014;16(12):6384-93.
Millar PJ, Levy AS, McGowan CL, McCartney N, MacDonald MJ. Isometric handgrip training lowers blood pressure and increases heart rate complexity in medicated hypertensive patients. Scand J Med Sci Sports. 2013;23(5):620-6.
de la Paz EM, Salvador E, Sanchez-Hechavarria ME, Cutiño I, Carrazana-Escalona R, de la Paz R. Activity of the autonomic nervous system cardivascular in different states of hypnotic depth. Int J Psychophysiol 2016;108:170 [Resumen].
Kindelán-Cira EH, Syed E, Sánchez-Hechavarría ME, Hernández-Cáceres JL. El análisis de la variabilidad de frecuencia cardíaca como una herramienta para evaluar los efectos de la meditación chi sobre la regulación cardiovascular. Rev Cuba Inform Méd [Internet]. 2017 [citado 15 Sep 2018];9(1):30-43. Disponible en: http://www.revinformatica.sld.cu/index.php/rcim/article/view/214/pdf_58
Tiinanen S, Kiviniemi A, Tulppo M, Seppanen T. Time-frequency representation of cardiovascular signals during handgrip exercise. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Minneapolis (USA); 2009.