2019, Number 2
<< Back Next >>
VacciMonitor 2019; 28 (2)
Adsorption conditions of a vacunal candidate based on outer membrane vesicles of Salmonella Paratyphi A in aluminum adjuvants
Hernández-Cedeño M, Zayas-Vignier C, Pérez-Quiñoy JL, Blain-Torres K, Pedroso-Fernández J, Soubal-Mora JP, Fernández-Castillo S, Acevedo-Grogues R
Language: Spanish
References: 21
Page: 62-67
PDF size: 297.82 Kb.
ABSTRACT
The immunostimulation capacity of most vaccines is enhanced through antigen adsorption on aluminum adjuvants. The
changes in adsorption conditions (pH, adsorption time), could change the amount of antigen adsorbed and therefore
the ability to stimulate the immune system. The Finlay Institute of Vaccine researches a new vaccine candidate based
on outer membrane vesicle from Salmonella Paratyphi A (OMV-SPA). The study aim was to determine adsorption
condition of OMV-SPA with two aluminium adjuvants (Al(OH)3 and AlPO4). OMV-SPA was adsorbed in both adjuvants
under differences conditions of pH and time. Parameters as adsorptive capacity (qm) and adsorption coefficient (Kd)
were determined by construction of Langmuir Isotherm. The lot of OMV-SPA used is composed by population of
nanostructure with a particle size between 60 and 100 nm. Adsorption of OMV-SPA in both adjuvants showed values
≥95% in neutral pH (6.5-7.0). OMV-SPA with AlPO4 got equilibrium state in less time (99% from 30 min) compared
with Al(OH)3 (95% from 3 h). Isotherms from both adjuvants described Langmuir model (R2≥0.99), with qm and
Kd values very different between adsorption systems. As conclusion, the study showed that OMV-SPA was adsorbed
satisfactorily in both aluminium adjuvants, process in which are involved different adsorption mechanism.
REFERENCES
Gupta RK. Aluminum compounds as vaccine adjuvants. Adv Drug Deliv Rev. 1998;32:155-72.
Al-shakhshir RH, Regnier FE, White JL, Hem SL. Contribution of Electrostatic and Hydrophobic Interactions to the Adsorption of Proteins by Aluminum-Containing Adjuvants. Vaccine. 1995;13(1):41-4.
Clapp T, Siebert P, Chen D, Jones Braun L, Braun LJ. Vaccines with Aluminium-Containing Adjuvants: Optimizing Vaccine Efficacy and Thermal Stability. J Pharm Sci. 2012;100(2):388-401.
Batista-Duharte A, Lastre M, Pérez O. Adyuvantes inmunológicos. Determinantes en el balance eficacia-toxicidad de las vacunas contemporáneas. Enferm Infecc Microbiol Clin. 2014;32(2):106-14.
Pakkanen SH, Kantele JM, Savolainen LE, Rombo L, Kantele A. Specific and cross-reactive immune response to oral Salmonella Typhi Ty21a and parenteral Vi capsular polysaccharide typhoid vaccines administered concomitantly. Vaccine. 2015;33(3):451-8.
Pakkanen SH, Kantele JM, Kantele A. Cross-reactive gut-directed immune response against Salmonella enterica serovar Paratyphi A and B in typhoid fever and after oral Ty21a typhoid vaccination. Vaccine. 2012;30(42):6047-53.
Xiong K, Chen Z, Zhu C, Li J, Hu X, Rao X, et al. Safety and immunogenicity of an attenuated Salmonella enterica serovar Paratyphi A vaccine candidate. Int J Med Microbiol. 2015;305(6):563-71.
Organización Mundial de la Salud. Salmonella (no tifoidea). Ginebra: OMS; 2017. p. 1-4. Disponible en: http://www.who.int/ mediacentre/factsheets/fs139/es/.
Martin LB, Simon R, Maclennan CA, Tennant SM, Sahastrabuddhe S, Khan MI. Status of paratyphoid fever vaccine research and development. Vaccine. 2016;34(26):2900-2.
Dassarma P, Negi VD, Balakrishnan A, Kim J-M, Karan R, Chakravortty D, et al. Haloarchaeal gas vesicle nanoparticles displaying {Salmonella} antigens as a novel approach to vaccine development. Procedia Vaccinol. 2015;9:16-23.
Pérez JL, González Y, Año G, Cedré B, Valmaseda T, Alvarez M, et al. Obtención de extractos de membrana externa de Vibrio cholerae O1, mediante el uso de diferentes detergentes. VacciMonitor. 2006;15(1):1-7.
Foo K, Hameed B. Insights into the modeling of adsorption isotherm systems. Chem Eng J. 2010;156(5):2–10.
Lowry OH, Rosebrough, Nira J, Farr L, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193(1):265-75.
Jully V, Moniotte N, Mathot F, Lemoine D, Preat V. Development of a High-Throughput Screening Platform to Study the Adsorption of Antigens onto Aluminum-Containing Adjuvants. J Pharm Sci. 2015;104(2):557-65.
Gołoś, Aleksandra, Lutyńska A. Aluminium-Adjuvanted Vaccines- -A Review of the current state of knowledge. Przegl Epidemiol. 2015;69(2):731-4.
Huang M, Wang W. Factors affecting alum-protein interactions. Int J Pharm. 2014;466(1-2):139-46.
Wang W, Singh M. Selection of Adjuvants for Enhanced Vaccine Potency. World J Vaccines. 2011;1(2):33-78.
Hem SL, Hogenesch H. Relationship between physical and chemical properties of aluminum-containing adjuvants and immunopotentiation. Expert Rev Vaccines. 2007;6(5):685-98.
Jully V, Frédéric M, Nicolas M, Véronique P, Lemoine D, Mathot F, et al. Mechanisms of Antigen Adsorption Onto an Aluminum- Hydroxide Adjuvant Evaluated by High-Throughput Screening. J Pham. Sci. 2016;105(6):1829-36.
Hansen B, Sokolovska A, HogenEsch H, Hem SL. Relationship between the strength of antigen adsorption to an aluminumcontaining adjuvant and the immune response. Vaccine. 2007;25(36):6618–24.
Iyer S, Robinett RSR, HogenEsch H, Hem SL. Mechanism of adsorption of hepatitis B surface antigen by aluminum hydroxide adjuvant. Vaccine. 2004;22(11-12):1475-9.