2019, Number 2
<< Back Next >>
Med Int Mex 2019; 35 (2)
Intravenous fluid therapy guided by goals
Nieto-Pérez OR, Sánchez-Díaz JS, Solórzano-Guerra A, Márquez- Rosales E, García-Parra OF, Zamarrón-López EI, Deloya-Tomas E, Monares-Zepeda E, Peniche-Moguel KG, del Carpio-Orantes L
Language: Spanish
References: 69
Page: 235-250
PDF size: 421.08 Kb.
ABSTRACT
Fluid therapy is the first maneuver performed by the physician to be in contact with
a patient who is intended to increase the volemia, the administration of parenteral
solution type, the amount and duration in its application is the challenge of the
intensivist. Currently the hemodynamic monitoring has undergone an important
technological advance, being minimally invasive and with not only static but also
dynamic constants, they have allowed to improve the medical decision making
in the critically ill patient. The present non-systematic review aims to provide an
update on measurements that are considered new tools before old paradigms in
hemodynamic monitoring.
REFERENCES
Finfer S, Delaney A. Pulmonary artery catheters. BMJ 2006;333;930-931.
Trottier SJ. Taylor RW. Physicians’ attitudes toward and knowledge of the pulmonary artery catheter: Society of Critical Care Medicine membership survey. New Horiz 1997;5:201-206.
Parmley CL, Pousman RM. Noninvasive cardiac output monitoring. Curr Opin Anaesthesiol 2002;15(6):675-80.
Carrillo R, Sánchez J, Jiménez E. Curva de presión venosa central. Rev Invest Med Sur Mex 2009;16(1):29-30.
Connors AF, McCaffee DR, Gray RA. Evaluation of right heart catheterization in the critically ill patient without acute myocardial infarction. N Engl J Med 1983;308:263-7.
Norton JM. Toward consistent definitions for preload and afterload. Adv Physiol Educ 2001;25:53-61.
Pinsky MR. Functional haemodynamic monitoring. Curr Opin Crit Care 2014;20:288-293.
Monnet X, Pinsky MR. Predicting the determinants of volume responsiveness. Intensive Care Med 2015;41:354-6.
Norton JM. Toward consistent definitions for preload and afterload. Adv Physiol Educ 2001;25:53-61.
Guyton A. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev 1955;35:123.
Fessler HE, Brower, RG, Wise, RA, et al. Effects of positive end-expiratory pressure on the canine venous return curve. Am Rev Respir Dis 1992;146:4.
Dupont H, Squara P. Cardiac output monitoring. Curr Opin Anaesthesiol 1996;9:490-4.
Guyton, A. Regulation of cardiac output. N Engl J Med 1967;277:805.
Baker KH. Venous return: implications for understanding clinical hemodynamics. ASA Refresher Courses Anesthesiol 2004;32:9-17.
Peters J, Mack GW, Lister G. The importance of the peripheral circulation in critical illnesses. Intensive Care Med 2001;27:1446-58.
Carsetti A, Cecconi M, Rhodes A. Fluid bolus therapy: monitoring and predicting fluid responsiveness. Curr Opin Crit Care 2015;21:388-394.
Horst HM, Obeid FN. Hemodynamic response to fluid challenge: a means of assessing volume status in the critically ill. Henry Ford Hosp Med J 1986;34:90-94.
Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 2002;121:2000-8.
Marik PE. Fluid responsiveness and the six guiding principles of fluid resuscitation. Crit Care Med 2016;44:1920-2.
Marik PE, Monnet X, Teboul JL. Hemodynamic parameters to guide fluid ther apy. Ann In tensive Care 2011;1(1):1.
Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med 2014;40(12):1795-1815.
McGee S. Physical examination of venous pressure: A critical review. Am Heart J 1997;136(1):10-18.
Wagner JG, Leatherman JW. Right ventricular end-diastolic volume as a predictor of the hemodynamic response to a fluid challenge. Chest 1998;113:1048-54.
Tousignant CP, Walsh F, Mazer CD. The use of transesophageal echocardiography for preload assessment in critically ill patients. Anesth Analg 2000;90:351-5.
Wagner JG, Leatherman JW. Right ventricular end-diastolic volume as a predictor of the hemodynamic response to a fluid challenge. Chest 1998;113:1048-54.
Calvin JE, Driedger AA, Sibbald WJ. The hemodynamic effect of rapid fluid infusion in critically ill patients. Surgery 1981;90:61-76.
Reuse C, Vincent JL, Pinsky MR. Measurements of right ventricular volumes during fluid challenge. Chest 1990;98:1450-4.
Magder S. More respect for the CVP. Intensive Care Med 1998;24:651-3.
Packman MI, Rackow EC. Optimum left heart-filling pressure during fluid resuscitation of patients with hypovolemic and septic shock. CCM 1983;11:165-9.
Baek S-E, Makabali GG, Bryan-Brown CW, et al. Plasma expansion in surgical patients with high central venous pressure (CVP); the relationship of blood volume to hematocrit, CVP, pulmonary wedge pressure, and cardiorespiratory changes. Surgery 1975;78:304-15.
Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med 2017;43:304-377.
Rivers E. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001;345:1368-77.
Marik P, Cavallazi R. Does the central venous pressure predict fluid responsiveness? an update meta-analysis and a plea for some common sense. Crit Care Med 2013;41(7):1774-1782.
Osman D, Ridel C, Ray P, et al. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med 2007;35:64-8.
Diebel LN, Wilson RF, Tagett MG, et al. End-diastolic volume. A better indicator of preload in the critically ill. Arch Surg 1992;127:817-22.
Pinsky Mr. Clinical significance of pulmonary artery occlusion pressure. Intensive Care Med 2003;29:175-8.
Diebel L, Wilson RF, Heins J, et al. End-diastolic volume versus pulmonary artery wedge pressure in evaluating cardiac preload in trauma patients. J Trauma 1994;37:950-5.
Schneider AJ, Teule GJ, Groeneveld AB, Nauta J, Heidendal GA, Thijs LG. Biventricular performance during volume loading in patients with early septic shock, with emphasis on the right ventricle: a combined hemodynamic and radionuclide study. Am Heart J 1988;116(1 Pt 1):103-12.
Diebel LN, Wilson RF, Tagett MG, et al. End-diastolic volume. A better indicator of preload in the critically ill. Arch Surg 1992;127:817-22.
Michard F, Alaya S, Zarka V, Bahloul M, Richard C, Teboul JL. Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest 2003;124:1900-8.
Leung JM, Levine EH. Left ventricular end-systolic cavity obliteration as an estimate of intraoperative hypovolemia. Anesthesiology 1994;81:1102-9.
Teboul JL, Grouped experts of SRLF. SRLF experts recommendations. Indicators of volume resuscitation during circulatory failure. Réanimation 2004;13:255-63.
Reinhart K, Kuhn HJ, Hartog C, Bredle DL. Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med 2004 Aug;30(8):1572-8.
Varpula M, Karlsson S, Ruokonen E, Pettilä V. Mixed venous oxygen saturation cannot be estimated by central venous oxygen saturation in septic shock. Intensive Care Med 2006 Sep;32(9):1336-43.
VanBeest PA, Lont MC, Holman ND, Loef B, Kuiper MA, Boerma EC. Central venous-arterial pCO2 difference as a tool in resuscitation of septic patients. Intensive Care Med 2013;39(6):1034-1039.
Mallat J, Lemyze M, Tronchon L, Vallet B, Thevenin D. Use of venous-to-arterial carbon dioxide tension difference to guide resuscitation therapy in septic shock. World J Crit Care Med 2016 Feb 4;5(1):47-56.
Mekontso-Dessap A, Castelain V, Anguel N, Bahloul M, Schauvliege F, Richard C, Teboul JL. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med 2002;28:272-277.
Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, Persichini R, Anguel N, Richard C, Teboul JL. Lactate and venoarterial carbon dioxide difference/ arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med 2013;41:1412-1420.
Mesquida J, Saludes P, Gruartmoner G, Espinal C, Torrents E, Baigorri F, Artigas A. Central venous-to-arterial carbon dioxide difference combined with arterial-to-venous oxygen content difference is associated with lactate evolution in the hemodynamic resuscitation process in early septic shock. Crit Care 2015;19:126.
He H, Liu D, Long Y, Wang XT. High central venous-to-arterial CO2 difference/arterial-central venous O2 difference ratio is associated with poor lactate clearance in septic patients after resuscitation. J Crit Car e 2016;31:76-81.
Rivera G, Sánchez JS, Martínez EA, García RC, Huanca JM, Calyeca MV. Clasificación clínica de la perfusión tisular en pacientes con choque séptico basada en la saturación venosa central de oxígeno (SvcO2) y la diferencia venoarterial de dióxido de carbono entre el contenido arteriovenoso de oxígeno (ΔP(v-a)CO2/C(a-v)O2). Med Crit 2016;30(5):283-289.
Sabatiera C, Mongeb I, Maynarc J, Ochagavia A. Valoración de la precarga y la respuesta cardiovascular al aporte de volumen. Med Intensiva 2012;36(1):45-55.
Marik PE, Cavallazzi R, Vasu T, et al. Stroke volume variation and fluid responsiveness. A systematic review of the literature. Crit Care Med 2009;37:2642-7.
Reuter DA, Bayerlein J, Goepfert MS, et al. Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients. Intensive Care Med 2003;29:476-80.
De Backer D, Heenen S, Piagnerelli M, et al. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 2005;31:517-23.
Mallat J, Meddour M, Durville E, Lemyze M, Pepy F, et al. Decrease in pulse pressure and stroke volume variations after mini-fluid challenge accurately predicts fluid responsiveness. Br J Anaesth 2015;449-56.
Guinot PG, Bernard E, Levrard M, Dupont H, Lorne E. Dynamic arterial elastance predicts mean arterial pressure decrease associated with decreasing norepinephrine dosage in septic shock. Critical Care 2015;19:14.
García MI, Romero MG, Cano AG, Aya HD, Rhodes A, Grounds RM, et al. Dynamic arterial elastance as a predictor of arterial pressure response to fluid administration: a validation study. Critical Care 2014;18:626.
Feissel M, Teboul JL, Merlani P, Badie J, Faller JP, Bendjelid K. Plethysmographic dynamic indices predict fluid responsiveness in septic ventilated patients. Intensive Care Med 2007;33:993-999.
Van Genderen ME, Bartels SA, Lima A, Bezemer R, Ince C, Bakker J et al. Peripheral perfusion index as an early predictor for central hypovolemia in awake healthy volunteers. Anesth Analg 2013;116:351-6.
Cannesson M, Desebbe O, Rosamel P, Delannoy B, Robin J, Bastien O, et al. Plat variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaes th 2008;101(2):200-6.
Monnet X, Marik P, Teboul JL. Passive leg raising for predicting fluid responsiveness: a systematic review and metaanalysis. Intensive Care Med 2016;42:1935-1947.
Cherpanath TG, Hirsch A, Geerts BF, et al. Predicting fluid responsiveness by passive leg raising: a systematic review and meta-analysis of 23 clinical trials. Crit Care Med 2016; 44:981-991.
Mahjoub Y, Touzeau J, Airapetian N, et al. The passive legraising maneuver cannot accurately predict fluid responsiveness in patients with intra-abdominal hypertension. Crit Care Med 2010;38:1824-1829.
Fellahi JL, Fischer MO, Dalbera A, et al. Can endotracheal bioimpedance cardiography assess hemodynamic response to passive leg raising following cardiac surgery? Ann Intensive Care 2012;2:26.
Monnet X, Bataille A, Magalhaes E, Barrois J, Le Corre M, Gosset C, et al. End-tidal carbon dioxide is better than arterial pressure for predicting volume responsiveness by the passive leg raising test. Intensive Care Med 2013 Jan;39(1):93-100.
Toupin F, Clairoux A, Deschamps A, Lebon JS, Lamarche Y, Lambert J, et al. Assessment of fluid responsiveness with end-tidal carbon dioxide using a simplified passive leg raising maneuver: a prospective observational study. Can J Anaesth 2016 Sep;63(9):1033-41.
Monge García MI, Gil Cano A, Gracia Romero M, Monterroso Pintado R, Pérez Madueño V, Díaz Monrové JC. Noninvasive assessment of fluid responsiveness by changes in partial end-tidal CO2 pressure during a passive leg-raising maneuver. Ann Intensive Care 2012 Mar 26;2:9.
Ma G, Hao G, Yang X, Zhu D, Liu H, Tu G, Luo Z. Internal jugular vein variability predicts fluid responsiveness in cardiac surgical patients with mechanical ventilation. Ann Intensive Care 2018;8:6. Doi: 10.1186/s13613-017- 0347-5.