2018, Number 1
<< Back Next >>
Rev Cubana Invest Bioméd 2018; 37 (1)
NCS-1 in neuronal function
Sánchez JC, García AM
Language: Spanish
References: 84
Page: 95-110
PDF size: 264.62 Kb.
ABSTRACT
NCS-1 is a calcium-binding protein, which regulates the functioning of diverse proteins, with which interacts to a molecular level. Its expression is widespread and it is not limited to neurons. Its effects include the regulation of receptors, ion channels and enzymes, which intervene in multiple neuronal functions. NCS-1 regulates the functioning of D2 dopamine receptor and adenosine A2A receptor, both fundamental in diverse communication processes that involve emotional and movement control in a variety of neural circuits. NCS-1 also regulates the activity of IP 3 receptor, an intracellular calcium ion channel (which is crucial in the regulation of calcium homeostasis), interacts with the IP kinases, which trigger intracellular signaling cascades, and modulates the activity of presynaptic calcium channels. All these effects lead to the regulation of neurotransmitters release and thus, synaptic plasticity, which had been proved in diverse experimental models. NCS-1 also appears to be involved in the regulation of other calcium and potassium channels, which can influence the neuron electric homeostasis and survival through the modulation of proapoptotic pathways. These broad NCS-1 effects motivate further research of the specific mechanisms that are involved in the regulation that this protein exerts on its target proteins and in new effects that may help to understand the role of this protein in physiological and pathophysiological processes.
REFERENCES
Berridge MJ. Neuronal calcium signaling. Neuron. 1998;21(1):13-26.
Berridge MJ, Bootman MD, Lipp P. Calcium-a life and death signal. Nature. 1998;395(6703):645-8.
Chapman ER. How does synaptotagmin trigger neurotransmitter release? Annu Rev Biochem. 2008;77:615-41.
Wayman GA, Lee YS, Tokumitsu H, Silva AJ, Soderling TR. Calmodulin-kinases: modulators of neuronal development and plasticity. Neuron. 2008;59(6):914-31.
Haeseleer F, Imanishi Y, Sokal I, Filipek S, Palczewski K. Calcium-binding proteins: intracellular sensors from the calmodulin superfamily. Biochem Biophys Res Commun. 2002;290(2):615-23.
Burgoyne RD. The neuronal calcium-sensor proteins. Biochim Biophys Acta. 2004;1742(1-3):59-68.
Ames JB, Lim S. Molecular structure and target recognition of neuronal calcium sensor proteins. Biochim Biophys Acta. 2012;1820(8):1205-13.
Pongs O, Lindemeier J, Zhu XR, Theil T, Engelkamp D, Krah-Jentgens I, et al. Frequenin-a novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron. 1993;11(1):15-28.
Hendricks KB, Wang BQ, Schnieders EA, Thorner J. Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase. Nat Cell Biol. 1999;1(4):234-41.
Gierke P, Zhao C, Brackmann M, Linke B, Heinemann U, Braunewell KH. Expression analysis of members of the neuronal calcium sensor protein family: combining bioinformatics and Western blot analysis. Biochem Biophys Res Commun. 2004;323(1):38-43.
Pruunsild P, Timmusk T. Structure, alternative splicing, and expression of the human and mouse KCNIP gene family. Genomics. 2005;86(5):581-93.
Jinno S, Jeromin A, Kosaka T. Expression and possible role of neuronal calcium sensor-1 in the cerebellum. Cerebellum. 2004;3(2):83-8.
McFerran BW, Graham ME, Burgoyne RD. Neuronal Ca2+ sensor 1, the mammalian homologue of frequenin, is expressed in chromaffin and PC12 cells and regulates neurosecretion from dense-core granules. J Biol Chem. 1998;273(35):22768-72.
Mora S, Durham PL, Smith JR, Russo AF, Jeromin A, Pessin JE. NCS-1 inhibits insulin-stimulated GLUT4 translocation in 3T3L1 adipocytes through a phosphatidylinositol 4-kinase-dependent pathway. J Biol Chem. 2002;277(30):27494-500.
Nakamura TY, Wakabayashi S. Role of neuronal calcium sensor-1 in the cardiovascular system. Trends Cardiovasc Med. 2012;22(1):12-7.
Burgoyne RD, Weiss JL. The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J. 2001;353(Pt 1):1-12.
O'Callaghan DW, Ivings L, Weiss JL, Ashby MC, Tepikin AV, Burgoyne RD. Differential use of myristoyl groups on neuronal calcium sensor proteins as a determinant of spatio-temporal aspects of Ca2+ signal transduction. J Biol Chem. 2002;277(16):14227-37.
O'Callaghan DW, Burgoyne RD. Identification of residues that determine the absence of a Ca(2+)/myristoyl switch in neuronal calcium sensor-1. J Biol Chem. 2004;279(14):14347-54.
Taverna E, Francolini M, Jeromin A, Hilfiker S, Roder J, Rosa P. Neuronal calcium sensor 1 and phosphatidylinositol 4-OH kinase beta interact in neuronal cells and are translocated to membranes during nucleotide-evoked exocytosis. J Cell Sci. 2002;115(Pt 20):3909-22.
Bourne Y, Dannenberg J, Pollmann V, Marchot P, Pongs O. Immunocytochemical localization and crystal structure of human frequenin (neuronal calcium sensor 1). J Biol Chem. 2001;276(15):11949-55.
Aravind P, Chandra K, Reddy PP, Jeromin A, Chary KV, Sharma Y. Regulatory and structural EF-hand motifs of neuronal calcium sensor-1: Mg 2+ modulates Ca 2+ binding, Ca 2+ -induced conformational changes, and equilibrium unfolding transitions. J Mol Biol. 2008;376(4):1100-15.
Kabbani N, Negyessy L, Lin R, Goldman-Rakic P, Levenson R. Interaction with neuronal calcium sensor NCS-1 mediates desensitization of the D2 dopamine receptor. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2002;22(19):8476-86.
Thanawala VJ, Kovoor A, Celver J, Sharma M. Regulation of D2 dopamine receptors by G-protein coupled receptor kinase (GRK) and β-Arrestin. The FASEB Journal. 2010;24(1 Supplement):584.6-6.
Lian LY, Pandalaneni SR, Patel P, McCue HV, Haynes LP, Burgoyne RD. Characterisation of the interaction of the C-terminus of the dopamine D2 receptor with neuronal calcium sensor-1. PLoS One. 2011;6(11):e27779.
Woll MP, De Cotiis DA, Bewley MC, Tacelosky DM, Levenson R, Flanagan JM. Interaction between the D2 dopamine receptor and neuronal calcium sensor-1 analyzed by fluorescence anisotropy. Biochemistry. 2011;50(41):8780-91.
Saab BJ, Georgiou J, Nath A, Lee FJ, Wang M, Michalon A, et al. NCS-1 in the dentate gyrus promotes exploration, synaptic plasticity, and rapid acquisition of spatial memory. Neuron. 2009;63(5):643-56.
de Rezende VB, Rosa DV, Comim CM, Magno LA, Rodrigues AL, Vidigal P, et al. NCS-1 deficiency causes anxiety and depressive-like behavior with impaired nonaversive memory in mice. Physiology & behavior. 2014;130:91-8.
Ng E, Varaschin RK, Su P, Browne CJ, Hermainski J, Le Foll B, et al. Neuronal calcium sensor-1 deletion in the mouse decreases motivation and dopamine release in the nucleus accumbens. Behavioural brain research. 2016;301:213-25.
Multani PK, Clarke TK, Narasimhan S, Ambrose-Lanci L, Kampman KM, Pettinati HM, et al. Neuronal calcium sensor-1 and cocaine addiction: a genetic association study in African-Americans and European Americans. Neuroscience letters. 2012;531(1):46-51.
Dragicevic E, Poetschke C, Duda J, Schlaudraff F, Lammel S, Schiemann J, et al. Cav 1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons. Brain: a journal of neurology. 2014;137(Pt 8):2287-302.
Koh PO, Undie AS, Kabbani N, Levenson R, Goldman-Rakic PS, Lidow MS. Upregulation of neuronal calcium sensor-1 (NCS-1) in the prefrontal cortex of schizophrenic and bipolar patients. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(1):313-7.
Kabbani N, Levenson R. Antipsychotic-induced alterations in D2 dopamine receptor interacting proteins within the cortex. Neuroreport. 2006;17(3):299-301.
Brown RM, Short JL. Adenosine A2A receptors and their role in drug addiction. Journal of Pharmacy and Pharmacology. 2008;60(11):1409-30.
Ferre S, Woods AS, Navarro G, Aymerich M, Lluis C, Franco R. Calcium-mediated modulation of the quaternary structure and function of adenosine A2A-dopamine D2 receptor heteromers. Current opinion in pharmacology. 2010;10(1):67-72.
Vu CB. Recent advances in the design and optimization of adenosine A2A receptor antagonists. Current opinion in drug discovery & development. 2005;8(4):458-68.
Schiffmann SN, Fisone G, Moresco R, Cunha RA, Ferre S. Adenosine A2A receptors and basal ganglia physiology. Progress in neurobiology. 2007;83(5):277-92.
Sebastiao AM, Ribeiro JA. Tuning and fine-tuning of synapses with adenosine. Current neuropharmacology. 2009;7(3):180-94.
Navarro G, Hradsky J, Lluis C, Casado V, McCormick PJ, Kreutz MR, et al. NCS-1 associates with adenosine A(2A) receptors and modulates receptor function. Front Mol Neurosci. 2012;5:53.
Boehmerle W, Splittgerber U, Lazarus MB, McKenzie KM, Johnston DG, Austin DJ, et al. Paclitaxel induces calcium oscillations via an inositol 1,4,5-trisphosphate receptor and neuronal calcium sensor 1-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(48):18356-61.
Schlecker C, Boehmerle W, Jeromin A, DeGray B, Varshney A, Sharma Y, et al. Neuronal calcium sensor-1 enhancement of InsP3 receptor activity is inhibited by therapeutic levels of lithium. J Clin Invest. 2006;116(6):1668-74.
Kasri NN, Holmes AM, Bultynck G, Parys JB, Bootman MD, Rietdorf K, et al. Regulation of InsP3 receptor activity by neuronal Ca2+-binding proteins. EMBO J. 2004;23(2):312-21.
Carozzi VA, Canta A, Chiorazzi A. Chemotherapy-induced peripheral neuropathy: What do we know about mechanisms? Neuroscience letters. 2015;596:90-107.
Wang MS, Davis AA, Culver DG, Wang Q, Powers JC, Glass JD. Calpain inhibition protects against Taxol-induced sensory neuropathy. Brain : a journal of neurology. 2004;127(Pt 3):671-9.
Matsumoto M, Nakagawa T, Inoue T, Nagata E, Tanaka K, Takano H, et al. Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature. 1996;379(6561):168-71.
Haug LS, Ostvold AC, Cowburn RF, Garlind A, Winblad B, Bogdanovich N, et al. Decreased inositol (1,4,5)-trisphosphate receptor levels in Alzheimer's disease cerebral cortex: selectivity of changes and possible correlation to pathological severity. Neurodegeneration : a journal for neurodegenerative disorders, neuroprotection, and neuroregeneration. 1996;5(2):169-76.
Tang TS, Tu H, Chan EY, Maximov A, Wang Z, Wellington CL, et al. Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron. 2003;39(2):227-39.
Zhang SX, Zhang JP, Fletcher DL, Zoeller RT, Sun GY. In situ hybridization of mRNA expression for IP3 receptor and IP3-3-kinase in rat brain after transient focal cerebral ischemia. Brain research Molecular brain research. 1995;32(2):252-60.
Suzuki K, Kusumi I, Sasaki Y, Koyama T. Serotonin-induced platelet intracellular calcium mobilization in various psychiatric disorders: is it specific to bipolar disorder? Journal of affective disorders. 2001;64(2-3):291-6.
Strunecka A, Ripova D. What can the investigation of phosphoinositide signaling system in platelets of schizophrenic patients tell us? Prostaglandins, leukotrienes, and essential fatty acids. 1999;61(1):1-5.
Mo M, Erdelyi I, Szigeti-Buck K, Benbow JH, Ehrlich BE. Prevention of paclitaxelinduced peripheral neuropathy by lithium pretreatment. FASEB J. 2012;26(11):4696709.
Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296(5573):1655-7.
Strahl T, Huttner IG, Lusin JD, Osawa M, King D, Thorner J, et al. Structural insights into activation of phosphatidylinositol 4-kinase (Pik1) by yeast frequenin (Frq1). Journal of Biological Chemistry. 2007;282(42):30949-59.
Walch-Solimena C, Novick P. The yeast phosphatidylinositol-4-OH kinase pik1 regulates secretion at the Golgi. Nature cell biology. 1999;1(8):523-5.
De Matteis M, Godi A, Corda D. Phosphoinositides and the golgi complex. Curr Opin Cell Biol. 2002;14(4):434-47.
Pan CY, Jeromin A, Lundstrom K, Yoo SH, Roder J, Fox AP. Alterations in exocytosis induced by neuronal Ca2+ sensor-1 in bovine chromaffin cells. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2002;22(7):2427-33.
56. Guo W, Malin SA, Johns DC, Jeromin A, Nerbonne JM. Modulation of Kv4encoded K(+) currents in the mammalian myocardium by neuronal calcium sensor-1. J Biol Chem. 2002;277(29):26436-43.
Nakamura TY, Pountney DJ, Ozaita A, Nandi S, Ueda S, Rudy B, et al. A role for frequenin, a Ca2+-binding protein, as a regulator of Kv4 K+-currents. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(22):1280813.
Lian LY, Pandalaneni SR, Todd PA, Martin VM, Burgoyne RD, Haynes LP. Demonstration of binding of neuronal calcium sensor-1 to the cav2.1 p/q-type calcium channel. Biochemistry. 2014;53(38):6052-62.
Yan J, Leal K, Magupalli VG, Nanou E, Martinez GQ, Scheuer T, et al. Modulation of CaV2.1 channels by neuronal calcium sensor-1 induces short-term synaptic facilitation. Mol Cell Neurosci. 2014;63:124-31.
Weiss JL, Archer DA, Burgoyne RD. Neuronal Ca2+ sensor-1/frequenin functions in an autocrine pathway regulating Ca2+ channels in bovine adrenal chromaffin cells. J Biol Chem. 2000;275(51):40082-7.
Wang CY, Yang F, He X, Chow A, Du J, Russell JT, et al. Ca(2+) binding protein frequenin mediates GDNF-induced potentiation of Ca(2+) channels and transmitter release. Neuron. 2001;32(1):99-112.
Gambino F, Pavlowsky A, Begle A, Dupont JL, Bahi N, Courjaret R, et al. IL1receptor accessory protein-like 1 (IL1RAPL1), a protein involved in cognitive functions, regulates N-type Ca2+-channel and neurite elongation. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(21):9063-8.
Hui K, Feng ZP. NCS-1 differentially regulates growth cone and somata calcium channels in Lymnaea neurons. Eur J Neurosci. 2008;27(3):631-43.
Hui H, McHugh D, Hannan M, Zeng F, Xu SZ, Khan SU, et al. Calcium-sensing mechanism in TRPC5 channels contributing to retardation of neurite outgrowth. J Physiol. 2006;572(Pt 1):165-72.
Zucker RS, Regehr WG. Short-term synaptic plasticity. Annual review of physiology. 2002;64:355-405.
Rumsey CC, Abbott LF. Equalization of synaptic efficacy by activity- and timingdependent synaptic plasticity. Journal of neurophysiology. 2004;91(5):2273-80.
Tsujimoto T, Jeromin A, Saitoh N, Roder JC, Takahashi T. Neuronal calcium sensor 1 and activity-dependent facilitation of P/Q-type calcium currents at presynaptic nerve terminals. Science. 2002;295(5563):2276-9.
Gomez M, De Castro E, Guarin E, Sasakura H, Kuhara A, Mori I, et al. Ca2+ signaling via the neuronal calcium sensor-1 regulates associative learning and memory in C. elegans. Neuron. 2001;30(1):241-8.
Olafsson P, Wang T, Lu B. Molecular cloning and functional characterization of the Xenopus Ca(2+)-binding protein frequenin. Proceedings of the National Academy of Sciences of the United States of America. 1995;92(17):8001-5.
Sippy T, Cruz-Martin A, Jeromin A, Schweizer FE. Acute changes in short-term plasticity at synapses with elevated levels of neuronal calcium sensor-1. Nat Neurosci. 2003;6(10):1031-8.
Jo J, Heon S, Kim MJ, Son GH, Park Y, Henley JM, et al. Metabotropic glutamate receptor-mediated LTD involves two interacting Ca(2+) sensors, NCS-1 and PICK1. Neuron. 2008;60(6):1095-111.
Amici M, Doherty A, Jo J, Jane D, Cho K, Collingridge G, et al. Neuronal calcium sensors and synaptic plasticity. Biochem Soc Trans. 2009;37(Pt 6):1359-63.
Koizumi S, Rosa P, Willars GB, Challiss RA, Taverna E, Francolini M, et al. Mechanisms underlying the neuronal calcium sensor-1-evoked enhancement of exocytosis in PC12 cells. J Biol Chem. 2002;277(33):30315-24.
Scalettar BA, Rosa P, Taverna E, Francolini M, Tsuboi T, Terakawa S, et al. Neuronal calcium sensor-1 binds to regulated secretory organelles and functions in basal and stimulated exocytosis in PC12 cells. J Cell Sci. 2002;115(Pt 11):2399-412.
Chen XL, Zhong ZG, Yokoyama S, Bark C, Meister B, Berggren PO, et al. Overexpression of rat neuronal calcium sensor-1 in rodent NG108-15 cells enhances synapse formation and transmission. J Physiol. 2001;532(Pt 3):649-59.
Guild SB, Murray AT, Wilson ML, Wiegand UK, Apps DK, Jin Y, et al. Overexpression of NCS-1 in AtT-20 cells affects ACTH secretion and storage. Mol Cell Endocrinol. 2001;184(1-2):51-63.
Rajebhosale M, Greenwood S, Vidugiriene J, Jeromin A, Hilfiker S. Phosphatidylinositol 4-OH kinase is a downstream target of neuronal calcium sensor-1 in enhancing exocytosis in neuroendocrine cells. J Biol Chem. 2003;278(8):6075-84.
Weiss JL, Hui H, Burgoyne RD. Neuronal calcium sensor-1 regulation of calcium channels, secretion, and neuronal outgrowth. Cellular and molecular neurobiology. 2010;30(8):1283-92.
Hilfiker S. Neuronal calcium sensor-1: a multifunctional regulator of secretion. Biochem Soc Trans. 2003;31(Pt 4):828-32.
Zheng Q, Bobich JA, Vidugiriene J, McFadden SC, Thomas F, Roder J, et al. Neuronal calcium sensor-1 facilitates neuronal exocytosis through phosphatidylinositol 4-kinase. J Neurochem. 2005;92(3):442-51.
Kirik D, Georgievska B, Bjorklund A. Localized striatal delivery of GDNF as a treatment for Parkinson disease. Nat Neurosci. 2004;7(2):105-10.
Nakamura TY, Jeromin A, Smith G, Kurushima H, Koga H, Nakabeppu Y, et al. Novel role of neuronal Ca2+ sensor-1 as a survival factor up-regulated in injured neurons. J Cell Biol. 2006;172(7):1081-91.
Perrelet D, Ferri A, Liston P, Muzzin P, Korneluk RG, Kato AC. IAPs are essential for GDNF-mediated neuroprotective effects in injured motor neurons in vivo. Nat Cell Biol. 2002;4(2):175-9.
Petrin D, Baker A, Coupland SG, Liston P, Narang M, Damji K, et al. Structural and functional protection of photoreceptors from MNU-induced retinal degeneration by the X-linked inhibitor of apoptosis. Investigative ophthalmology & visual science. 2003;44(6):2757-63.