2018, Número 1
<< Anterior Siguiente >>
Rev Cubana Invest Bioméd 2018; 37 (1)
NCS-1 en la función neuronal
Sánchez JC, García AM
Idioma: Español
Referencias bibliográficas: 84
Paginas: 95-110
Archivo PDF: 264.62 Kb.
RESUMEN
NCS-1 es una proteína unidora de calcio, que regula el funcionamiento de otras proteínas, con las cuales interactúa a nivel molecular. Su expresión es amplia y no limitada a neuronas. Sus efectos incluyen la regulación de receptores, canales iónicos y enzimas que intervienen en múltiples funciones neuronales. NCS-1 regula la actividad del receptor D2 de dopamina y del receptor A2A de adenosina, ambos fundamentales en diversos procesos de comunicación que involucran control emocional y control de movimientos en varios circuitos. NCS-1 también regula la actividad del receptor de IP3, un canal de calcio intracelular fundamental en la regulación de la homeostasis de este ion, interactúa con IP kinasas, las cuales a su vez desencadenan cascadas de señalización intracelular y modula la actividad de canales de calcio presinápticos; todos estos efectos redundan en regulación de la liberación de neurotransmisores y por ende, de la plasticidad sináptica, lo cual ha sido probado en diversos modelos experimentales. NCS-1 también parece estar involucrada en la regulación de otros canales iónicos de calcio y de potasio que podrían influir en la homeostasis eléctrica de las neuronas y en la supervivencia neuronal a través de la regulación de vías proapoptóticas. Estos amplios efectos de NCS-1 motivan a profundizar la investigación en los mecanismos involucrados en la regulación que ejerce sobre sus proteínas blanco y en nuevos efectos que ayuden a entender el rol de esta proteína en diversos procesos fisiológicos y fisiopatológicos.
REFERENCIAS (EN ESTE ARTÍCULO)
Berridge MJ. Neuronal calcium signaling. Neuron. 1998;21(1):13-26.
Berridge MJ, Bootman MD, Lipp P. Calcium-a life and death signal. Nature. 1998;395(6703):645-8.
Chapman ER. How does synaptotagmin trigger neurotransmitter release? Annu Rev Biochem. 2008;77:615-41.
Wayman GA, Lee YS, Tokumitsu H, Silva AJ, Soderling TR. Calmodulin-kinases: modulators of neuronal development and plasticity. Neuron. 2008;59(6):914-31.
Haeseleer F, Imanishi Y, Sokal I, Filipek S, Palczewski K. Calcium-binding proteins: intracellular sensors from the calmodulin superfamily. Biochem Biophys Res Commun. 2002;290(2):615-23.
Burgoyne RD. The neuronal calcium-sensor proteins. Biochim Biophys Acta. 2004;1742(1-3):59-68.
Ames JB, Lim S. Molecular structure and target recognition of neuronal calcium sensor proteins. Biochim Biophys Acta. 2012;1820(8):1205-13.
Pongs O, Lindemeier J, Zhu XR, Theil T, Engelkamp D, Krah-Jentgens I, et al. Frequenin-a novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron. 1993;11(1):15-28.
Hendricks KB, Wang BQ, Schnieders EA, Thorner J. Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase. Nat Cell Biol. 1999;1(4):234-41.
Gierke P, Zhao C, Brackmann M, Linke B, Heinemann U, Braunewell KH. Expression analysis of members of the neuronal calcium sensor protein family: combining bioinformatics and Western blot analysis. Biochem Biophys Res Commun. 2004;323(1):38-43.
Pruunsild P, Timmusk T. Structure, alternative splicing, and expression of the human and mouse KCNIP gene family. Genomics. 2005;86(5):581-93.
Jinno S, Jeromin A, Kosaka T. Expression and possible role of neuronal calcium sensor-1 in the cerebellum. Cerebellum. 2004;3(2):83-8.
McFerran BW, Graham ME, Burgoyne RD. Neuronal Ca2+ sensor 1, the mammalian homologue of frequenin, is expressed in chromaffin and PC12 cells and regulates neurosecretion from dense-core granules. J Biol Chem. 1998;273(35):22768-72.
Mora S, Durham PL, Smith JR, Russo AF, Jeromin A, Pessin JE. NCS-1 inhibits insulin-stimulated GLUT4 translocation in 3T3L1 adipocytes through a phosphatidylinositol 4-kinase-dependent pathway. J Biol Chem. 2002;277(30):27494-500.
Nakamura TY, Wakabayashi S. Role of neuronal calcium sensor-1 in the cardiovascular system. Trends Cardiovasc Med. 2012;22(1):12-7.
Burgoyne RD, Weiss JL. The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J. 2001;353(Pt 1):1-12.
O'Callaghan DW, Ivings L, Weiss JL, Ashby MC, Tepikin AV, Burgoyne RD. Differential use of myristoyl groups on neuronal calcium sensor proteins as a determinant of spatio-temporal aspects of Ca2+ signal transduction. J Biol Chem. 2002;277(16):14227-37.
O'Callaghan DW, Burgoyne RD. Identification of residues that determine the absence of a Ca(2+)/myristoyl switch in neuronal calcium sensor-1. J Biol Chem. 2004;279(14):14347-54.
Taverna E, Francolini M, Jeromin A, Hilfiker S, Roder J, Rosa P. Neuronal calcium sensor 1 and phosphatidylinositol 4-OH kinase beta interact in neuronal cells and are translocated to membranes during nucleotide-evoked exocytosis. J Cell Sci. 2002;115(Pt 20):3909-22.
Bourne Y, Dannenberg J, Pollmann V, Marchot P, Pongs O. Immunocytochemical localization and crystal structure of human frequenin (neuronal calcium sensor 1). J Biol Chem. 2001;276(15):11949-55.
Aravind P, Chandra K, Reddy PP, Jeromin A, Chary KV, Sharma Y. Regulatory and structural EF-hand motifs of neuronal calcium sensor-1: Mg 2+ modulates Ca 2+ binding, Ca 2+ -induced conformational changes, and equilibrium unfolding transitions. J Mol Biol. 2008;376(4):1100-15.
Kabbani N, Negyessy L, Lin R, Goldman-Rakic P, Levenson R. Interaction with neuronal calcium sensor NCS-1 mediates desensitization of the D2 dopamine receptor. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2002;22(19):8476-86.
Thanawala VJ, Kovoor A, Celver J, Sharma M. Regulation of D2 dopamine receptors by G-protein coupled receptor kinase (GRK) and β-Arrestin. The FASEB Journal. 2010;24(1 Supplement):584.6-6.
Lian LY, Pandalaneni SR, Patel P, McCue HV, Haynes LP, Burgoyne RD. Characterisation of the interaction of the C-terminus of the dopamine D2 receptor with neuronal calcium sensor-1. PLoS One. 2011;6(11):e27779.
Woll MP, De Cotiis DA, Bewley MC, Tacelosky DM, Levenson R, Flanagan JM. Interaction between the D2 dopamine receptor and neuronal calcium sensor-1 analyzed by fluorescence anisotropy. Biochemistry. 2011;50(41):8780-91.
Saab BJ, Georgiou J, Nath A, Lee FJ, Wang M, Michalon A, et al. NCS-1 in the dentate gyrus promotes exploration, synaptic plasticity, and rapid acquisition of spatial memory. Neuron. 2009;63(5):643-56.
de Rezende VB, Rosa DV, Comim CM, Magno LA, Rodrigues AL, Vidigal P, et al. NCS-1 deficiency causes anxiety and depressive-like behavior with impaired nonaversive memory in mice. Physiology & behavior. 2014;130:91-8.
Ng E, Varaschin RK, Su P, Browne CJ, Hermainski J, Le Foll B, et al. Neuronal calcium sensor-1 deletion in the mouse decreases motivation and dopamine release in the nucleus accumbens. Behavioural brain research. 2016;301:213-25.
Multani PK, Clarke TK, Narasimhan S, Ambrose-Lanci L, Kampman KM, Pettinati HM, et al. Neuronal calcium sensor-1 and cocaine addiction: a genetic association study in African-Americans and European Americans. Neuroscience letters. 2012;531(1):46-51.
Dragicevic E, Poetschke C, Duda J, Schlaudraff F, Lammel S, Schiemann J, et al. Cav 1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons. Brain: a journal of neurology. 2014;137(Pt 8):2287-302.
Koh PO, Undie AS, Kabbani N, Levenson R, Goldman-Rakic PS, Lidow MS. Upregulation of neuronal calcium sensor-1 (NCS-1) in the prefrontal cortex of schizophrenic and bipolar patients. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(1):313-7.
Kabbani N, Levenson R. Antipsychotic-induced alterations in D2 dopamine receptor interacting proteins within the cortex. Neuroreport. 2006;17(3):299-301.
Brown RM, Short JL. Adenosine A2A receptors and their role in drug addiction. Journal of Pharmacy and Pharmacology. 2008;60(11):1409-30.
Ferre S, Woods AS, Navarro G, Aymerich M, Lluis C, Franco R. Calcium-mediated modulation of the quaternary structure and function of adenosine A2A-dopamine D2 receptor heteromers. Current opinion in pharmacology. 2010;10(1):67-72.
Vu CB. Recent advances in the design and optimization of adenosine A2A receptor antagonists. Current opinion in drug discovery & development. 2005;8(4):458-68.
Schiffmann SN, Fisone G, Moresco R, Cunha RA, Ferre S. Adenosine A2A receptors and basal ganglia physiology. Progress in neurobiology. 2007;83(5):277-92.
Sebastiao AM, Ribeiro JA. Tuning and fine-tuning of synapses with adenosine. Current neuropharmacology. 2009;7(3):180-94.
Navarro G, Hradsky J, Lluis C, Casado V, McCormick PJ, Kreutz MR, et al. NCS-1 associates with adenosine A(2A) receptors and modulates receptor function. Front Mol Neurosci. 2012;5:53.
Boehmerle W, Splittgerber U, Lazarus MB, McKenzie KM, Johnston DG, Austin DJ, et al. Paclitaxel induces calcium oscillations via an inositol 1,4,5-trisphosphate receptor and neuronal calcium sensor 1-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(48):18356-61.
Schlecker C, Boehmerle W, Jeromin A, DeGray B, Varshney A, Sharma Y, et al. Neuronal calcium sensor-1 enhancement of InsP3 receptor activity is inhibited by therapeutic levels of lithium. J Clin Invest. 2006;116(6):1668-74.
Kasri NN, Holmes AM, Bultynck G, Parys JB, Bootman MD, Rietdorf K, et al. Regulation of InsP3 receptor activity by neuronal Ca2+-binding proteins. EMBO J. 2004;23(2):312-21.
Carozzi VA, Canta A, Chiorazzi A. Chemotherapy-induced peripheral neuropathy: What do we know about mechanisms? Neuroscience letters. 2015;596:90-107.
Wang MS, Davis AA, Culver DG, Wang Q, Powers JC, Glass JD. Calpain inhibition protects against Taxol-induced sensory neuropathy. Brain : a journal of neurology. 2004;127(Pt 3):671-9.
Matsumoto M, Nakagawa T, Inoue T, Nagata E, Tanaka K, Takano H, et al. Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature. 1996;379(6561):168-71.
Haug LS, Ostvold AC, Cowburn RF, Garlind A, Winblad B, Bogdanovich N, et al. Decreased inositol (1,4,5)-trisphosphate receptor levels in Alzheimer's disease cerebral cortex: selectivity of changes and possible correlation to pathological severity. Neurodegeneration : a journal for neurodegenerative disorders, neuroprotection, and neuroregeneration. 1996;5(2):169-76.
Tang TS, Tu H, Chan EY, Maximov A, Wang Z, Wellington CL, et al. Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron. 2003;39(2):227-39.
Zhang SX, Zhang JP, Fletcher DL, Zoeller RT, Sun GY. In situ hybridization of mRNA expression for IP3 receptor and IP3-3-kinase in rat brain after transient focal cerebral ischemia. Brain research Molecular brain research. 1995;32(2):252-60.
Suzuki K, Kusumi I, Sasaki Y, Koyama T. Serotonin-induced platelet intracellular calcium mobilization in various psychiatric disorders: is it specific to bipolar disorder? Journal of affective disorders. 2001;64(2-3):291-6.
Strunecka A, Ripova D. What can the investigation of phosphoinositide signaling system in platelets of schizophrenic patients tell us? Prostaglandins, leukotrienes, and essential fatty acids. 1999;61(1):1-5.
Mo M, Erdelyi I, Szigeti-Buck K, Benbow JH, Ehrlich BE. Prevention of paclitaxelinduced peripheral neuropathy by lithium pretreatment. FASEB J. 2012;26(11):4696709.
Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296(5573):1655-7.
Strahl T, Huttner IG, Lusin JD, Osawa M, King D, Thorner J, et al. Structural insights into activation of phosphatidylinositol 4-kinase (Pik1) by yeast frequenin (Frq1). Journal of Biological Chemistry. 2007;282(42):30949-59.
Walch-Solimena C, Novick P. The yeast phosphatidylinositol-4-OH kinase pik1 regulates secretion at the Golgi. Nature cell biology. 1999;1(8):523-5.
De Matteis M, Godi A, Corda D. Phosphoinositides and the golgi complex. Curr Opin Cell Biol. 2002;14(4):434-47.
Pan CY, Jeromin A, Lundstrom K, Yoo SH, Roder J, Fox AP. Alterations in exocytosis induced by neuronal Ca2+ sensor-1 in bovine chromaffin cells. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2002;22(7):2427-33.
56. Guo W, Malin SA, Johns DC, Jeromin A, Nerbonne JM. Modulation of Kv4encoded K(+) currents in the mammalian myocardium by neuronal calcium sensor-1. J Biol Chem. 2002;277(29):26436-43.
Nakamura TY, Pountney DJ, Ozaita A, Nandi S, Ueda S, Rudy B, et al. A role for frequenin, a Ca2+-binding protein, as a regulator of Kv4 K+-currents. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(22):1280813.
Lian LY, Pandalaneni SR, Todd PA, Martin VM, Burgoyne RD, Haynes LP. Demonstration of binding of neuronal calcium sensor-1 to the cav2.1 p/q-type calcium channel. Biochemistry. 2014;53(38):6052-62.
Yan J, Leal K, Magupalli VG, Nanou E, Martinez GQ, Scheuer T, et al. Modulation of CaV2.1 channels by neuronal calcium sensor-1 induces short-term synaptic facilitation. Mol Cell Neurosci. 2014;63:124-31.
Weiss JL, Archer DA, Burgoyne RD. Neuronal Ca2+ sensor-1/frequenin functions in an autocrine pathway regulating Ca2+ channels in bovine adrenal chromaffin cells. J Biol Chem. 2000;275(51):40082-7.
Wang CY, Yang F, He X, Chow A, Du J, Russell JT, et al. Ca(2+) binding protein frequenin mediates GDNF-induced potentiation of Ca(2+) channels and transmitter release. Neuron. 2001;32(1):99-112.
Gambino F, Pavlowsky A, Begle A, Dupont JL, Bahi N, Courjaret R, et al. IL1receptor accessory protein-like 1 (IL1RAPL1), a protein involved in cognitive functions, regulates N-type Ca2+-channel and neurite elongation. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(21):9063-8.
Hui K, Feng ZP. NCS-1 differentially regulates growth cone and somata calcium channels in Lymnaea neurons. Eur J Neurosci. 2008;27(3):631-43.
Hui H, McHugh D, Hannan M, Zeng F, Xu SZ, Khan SU, et al. Calcium-sensing mechanism in TRPC5 channels contributing to retardation of neurite outgrowth. J Physiol. 2006;572(Pt 1):165-72.
Zucker RS, Regehr WG. Short-term synaptic plasticity. Annual review of physiology. 2002;64:355-405.
Rumsey CC, Abbott LF. Equalization of synaptic efficacy by activity- and timingdependent synaptic plasticity. Journal of neurophysiology. 2004;91(5):2273-80.
Tsujimoto T, Jeromin A, Saitoh N, Roder JC, Takahashi T. Neuronal calcium sensor 1 and activity-dependent facilitation of P/Q-type calcium currents at presynaptic nerve terminals. Science. 2002;295(5563):2276-9.
Gomez M, De Castro E, Guarin E, Sasakura H, Kuhara A, Mori I, et al. Ca2+ signaling via the neuronal calcium sensor-1 regulates associative learning and memory in C. elegans. Neuron. 2001;30(1):241-8.
Olafsson P, Wang T, Lu B. Molecular cloning and functional characterization of the Xenopus Ca(2+)-binding protein frequenin. Proceedings of the National Academy of Sciences of the United States of America. 1995;92(17):8001-5.
Sippy T, Cruz-Martin A, Jeromin A, Schweizer FE. Acute changes in short-term plasticity at synapses with elevated levels of neuronal calcium sensor-1. Nat Neurosci. 2003;6(10):1031-8.
Jo J, Heon S, Kim MJ, Son GH, Park Y, Henley JM, et al. Metabotropic glutamate receptor-mediated LTD involves two interacting Ca(2+) sensors, NCS-1 and PICK1. Neuron. 2008;60(6):1095-111.
Amici M, Doherty A, Jo J, Jane D, Cho K, Collingridge G, et al. Neuronal calcium sensors and synaptic plasticity. Biochem Soc Trans. 2009;37(Pt 6):1359-63.
Koizumi S, Rosa P, Willars GB, Challiss RA, Taverna E, Francolini M, et al. Mechanisms underlying the neuronal calcium sensor-1-evoked enhancement of exocytosis in PC12 cells. J Biol Chem. 2002;277(33):30315-24.
Scalettar BA, Rosa P, Taverna E, Francolini M, Tsuboi T, Terakawa S, et al. Neuronal calcium sensor-1 binds to regulated secretory organelles and functions in basal and stimulated exocytosis in PC12 cells. J Cell Sci. 2002;115(Pt 11):2399-412.
Chen XL, Zhong ZG, Yokoyama S, Bark C, Meister B, Berggren PO, et al. Overexpression of rat neuronal calcium sensor-1 in rodent NG108-15 cells enhances synapse formation and transmission. J Physiol. 2001;532(Pt 3):649-59.
Guild SB, Murray AT, Wilson ML, Wiegand UK, Apps DK, Jin Y, et al. Overexpression of NCS-1 in AtT-20 cells affects ACTH secretion and storage. Mol Cell Endocrinol. 2001;184(1-2):51-63.
Rajebhosale M, Greenwood S, Vidugiriene J, Jeromin A, Hilfiker S. Phosphatidylinositol 4-OH kinase is a downstream target of neuronal calcium sensor-1 in enhancing exocytosis in neuroendocrine cells. J Biol Chem. 2003;278(8):6075-84.
Weiss JL, Hui H, Burgoyne RD. Neuronal calcium sensor-1 regulation of calcium channels, secretion, and neuronal outgrowth. Cellular and molecular neurobiology. 2010;30(8):1283-92.
Hilfiker S. Neuronal calcium sensor-1: a multifunctional regulator of secretion. Biochem Soc Trans. 2003;31(Pt 4):828-32.
Zheng Q, Bobich JA, Vidugiriene J, McFadden SC, Thomas F, Roder J, et al. Neuronal calcium sensor-1 facilitates neuronal exocytosis through phosphatidylinositol 4-kinase. J Neurochem. 2005;92(3):442-51.
Kirik D, Georgievska B, Bjorklund A. Localized striatal delivery of GDNF as a treatment for Parkinson disease. Nat Neurosci. 2004;7(2):105-10.
Nakamura TY, Jeromin A, Smith G, Kurushima H, Koga H, Nakabeppu Y, et al. Novel role of neuronal Ca2+ sensor-1 as a survival factor up-regulated in injured neurons. J Cell Biol. 2006;172(7):1081-91.
Perrelet D, Ferri A, Liston P, Muzzin P, Korneluk RG, Kato AC. IAPs are essential for GDNF-mediated neuroprotective effects in injured motor neurons in vivo. Nat Cell Biol. 2002;4(2):175-9.
Petrin D, Baker A, Coupland SG, Liston P, Narang M, Damji K, et al. Structural and functional protection of photoreceptors from MNU-induced retinal degeneration by the X-linked inhibitor of apoptosis. Investigative ophthalmology & visual science. 2003;44(6):2757-63.