2017, Number 4
<< Back Next >>
Rev Cubana Invest Bioméd 2017; 36 (4)
Mathematical diagnosis of cardiac dynamics in 16 hours and evaluation of hemodynamic variables in the Intensive Care Unit
Rodríguez VJO, Prieto BSE, Correa HSC, Soracipa MMY, Oliveros RH
Language: Spanish
References: 42
Page: 1-15
PDF size: 164.47 Kb.
ABSTRACT
Introduction: from dynamic systems, diagnosis of cardiac dynamics applicable to
clinic in 16 hours was developed, useful for patient's intensive care unit.
Objectives: to confirm the diagnostic ability of the new assessment methodology of
cardiac dynamics in 16 hours and determine the evolution of the arterial and venous
pressure of oxygen and carbon dioxide.
Methods: 50 dynamic were taken, 10 normal and 40 with acute pathologies, taking
the minimum and maximum heart rate, and number of beats per minute. Attractors
were constructed and areas of occupation and the fractal dimension in 21 and 16
hours were evaluated, comparing both physical and mathematical diagnosis each
other. Subsequently a confirmation of the diagnosis made in 16 hours by a blinded
study compared to conventional diagnosis. Additionally, values of the arterial and
venous pressure of oxygen and carbon dioxide from 7 Intensive Care Unit patients
were taken and chaotic attractors were constructed to evaluate the minimum and
maximum values of the attractor on the delay map.
Results: the diagnostic capability of the methodology in 16 hours for cardiac dynamic
was confirmed, with sensitivity and specificity of 100% and kappa coefficient 1 over
conventional diagnosis; the minimum and maximum values of the arterial and venous
pressure of oxygen and carbon dioxide were found between 29.60 and 194.40; 24.20
and 56.10; 16,40 and 65,60 and 21,40 and 97,90 respectively.
Conclusions: diagnostic predictions were confirmed in 16 hours differentiating
normal, chronic and acute disease useful for clinical monitoring in Intensive Care Unit
patients. The variables behaved chaotically; these results may inform clinical
applications and predictions of mortality.
REFERENCES
Devaney R. A first course in chaotic dynamical systems theory and experiments. Reading Mass: Addison- Wesley; 1992.
Mandelbrot B. Introducción. En: Los Objetos Fractales. Barcelona: Tusquets Eds. S.A; 2000. p. 13-26.
Peitgen H, Jurgens H, Saupe D. Strange attractors, the locus of chaos. In: Chaos and Fractals: New Frontiers of Science. New York: Springer-Verlag; 1992. p. 655-768.
Jimenez L, Montero FJ. Medicina de urgencias y emergencias: guía diagnóstica y protocolos de actuación. 3ª Ed, Madrid: Elsevier; 2006
Gómez D, Fernández G, Gutiérrez Á, Daza L, Fernández C, Manrique N, et al. Cálculo de los contenidos arterial y venoso de oxígeno, de la diferencia arteriovenosa de oxígeno, tasa de extracción tisular de oxígeno y shunt intrapulmonar con unas nuevas fórmulas, basadas en la saturación de oxígeno. Revista facultad de medicina. 2000;48(2):67-76.
Perkins G, McAuley D, Giles S, Routledge H, Gao F. Do changes in pulse oximeter oxygen saturation predict equivalent changes in arterial oxygen saturation? Crit Care. 2003;7(4):R67-R71.
Figueredo OL, González S. Morbimortalidad en la Unidad de Cuidados Intensivos. Rev Electrónica Portales Médicos; 2010. p. 1-22.
Feynman RP, Leighton RB, Sands M. Leyes de la Termodinámica. En: Física. Vol. 1. Primera edición Wilmington: Addison-Wesley Iberoamericana, S. A; 1998. p. 44-9.
Feynman R. Comportamiento cuántico. En: Feynman RP, Leighton RB, Sands M. Física. Vol. 1. Wilmington: Addison-Wesley Iberoamericana, S. A; 1964.
Rañada A. Introducción. En Orden y Caos. Scientific American. Barcelona: Prensa Cientifica S.A.; 1990. p. 4-8.
Rodríguez J, Correa C, Melo M, Domínguez, D, Prieto S, Cardona DM, et al. Chaotic cardiac law: Developing predictions of clinical application. J Med Med Sci 2013;4(2):79-84.
Rodríguez J, Prieto S, Mendoza F, Velásquez N. Physical mathematical evaluation of the cardiac dynamic applying the Zipf - Mandelbrot law. Journal of Modern Physics. 2015;6:1881-8.
Rodríguez J, Prieto S, Domínguez D, Melo M, Mendoza F, Correa C, et al. Mathematical-physical prediction of cardiac dynamics using the proportional entropy of dynamic systems. J Med Med Sci. 2013;4(8):370-81.
Rodríguez J, Prieto S, Correa C, Soracipa Y, Aguirre G, Méndez L, et al. Proportional entropy applied to the clinical diagnostic of cardiac dynamic: blind study with 600 holter. The 61st Annual Conference of the Israel Heart Society in association with The Israel Society of Cardiothoracic Surgery. Tel Aviv, Israel; 2014.
Rodríguez J. Proportional Entropy of the cardiac dynamics in CCU patients. 7th International Meeting Intensive Cardiac Care. Israel Heart Society, European Society of Cardiology, EBAC. Tel Aviv, Israel; 2011.
Rodríguez J, Prieto S, Avilán N, Correa C, Bernal P, Ortiz L, et al. Nueva metodología física y matemática de evaluación del Holter. Rev Colomb Cardiol. 2008;15:50-4.
Rodríguez J, Prieto S, Bernal P, Soracipa Y, Salazar G, Isaza D, et al. Nueva metodología de ayuda diagnóstica de la dinámica geométrica cardiaca dinámica cardiaca caótica del holter. Rev Acad Colomb Cienc. 2011;35(134):5-12.
Rodríguez J. Mathematics physical assessment of cardiac dynamics based on theory of probability and proportions of entropy in the intensive care unit for patients with arrhythmia. International Conference on Medical Physics. Birmingham, UK; 2015.
Rodríguez J, Prieto S, Correa C, Oliveros H, Soracipa Y, Velasco A, et al. Diagnóstico de la dinámica cardiaca durante 16 horas desde los sistemas dinámicos aplicable en UCI. En evaluación para publicación.
Perkiomaki J, Mäkikallio T, Huikuri H. Fractal and complexity measures of heart rate variability. En: Clinical and Experimental Hypertension. 2005;27(2-3):149-58.
Gallo J, Farbiarz J, Alvarez D. Análisis espectral de la variabilidad de la frecuencia cardiaca. Iatreia. 1999;12(2):61-71.
Guillen P, Vallverdú M, Rojas R, Jugo D, Carrasco H, Caminal P, et al. Dinámica no lineal para caracterizar la dinámica la variabilidad del ritmo cardíaco en pacientes chagásticos. Memorias II Congreso Lationoamericano de Ingenieria Biomedica. Habana, Cuba. 2001 [citado 17 de diciembre de 2015]. Disponible desde internet en: http://www.saber.ula.ve/bitstream/123456789/15820/1/dinamica_nolineal.pdf
Goldberger AL, Amaral L, Hausdorff JM, Ivanov PC, Peng CK, Stanley HE, et al. Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci U S A. 2002;99(1):2466-72.
Huikuri HV, Mäkikallio TH, Peng Ch, Goldberger AL, Hintze U, Moller M, et al. Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infartion. Circulation 2000;101:47-53.
Voss A, Schulz S, Schroeder R, Baumert M, Caminal P. Methods derived from nonlinear dynamics for analysing heart rate variability. Philosophical Transactions of Royal Society A. 2009;367(1887):277-96.
Juha S, PerkiöMä Ki, Timo H, Mäkikallio, Huikuri H. Fractal and complexity measures of heart rate variability. Clin Exp Hypertens 2005;2-3:149-58.
Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985t;13(10):818-29.
Hosseini M, Ramazani J. Comparison of acute physiology and chronic health evaluation II and Glasgow Coma Score in predicting the outcomes of Post Anesthesia Care Unit's patients. Saudi J Anaesth. 2015;9(2):136-41.
Naved SA. Análisis APACHE II de una población de unidades de cuidados intensivos quirúrgicos en un hospital de atención terciaria en Karachi. Journal of the College of Physicians and Surgeons Pakistan. 2011;21(1):4-8.
Reich DL. Monitoring in Anesthesia and Perioperative Care. Cambridge: University Press; 2011.
Hsieh Y, Su M, Wang C. Wang, P. Prediction of survival of ICU patients using computational intelligence. Comput Biol Med. 2014;47:13-9.
Cismondi F, Celi LA, Fialho AS, Vieira SM, Reti SR, Sousa JM, et al. Reducing unnecessary lab testing in the ICU with artificial intelligence. International Journal of Medical Informatics. 2015;8:345-58.
Kajimoto K, Sato N, Takano T. Association of age and baseline systolic blood pressure with outcomes in patients hospitalized for acute heart failure syndromes. 2015;191:100-6.
Esteve F. Evaluation of the PaO2/FiO2 ratio after cardiac surgery as a predictor of outcome during hospital stay. BMC Anesthesiology. 2014;14:83.
Rodríguez J, Prieto S, Flórez M, Alarcón C, López R, Aguirre G, et al. Physicalmathematical diagnosis of cardiac dynamic on neonatal sepsis: predictions of clinical application. J Med Med Sci. 2014;5(5):102-8.
Rodríguez J. Nuevo diagnóstico físico y matemático de la monitoria fetal: predicción de aplicación clínica. Momento Revista de Física. 2012;44:49-65.
Rodríguez J. Método para la predicción de la dinámica temporal de la malaria en los municipios de Colombia. Rev Panam Salud Pública. 2010;27(3):211-8.
Rodríguez J, Prieto S, Correa C, Pérez C, Mora J, Bravo J, et al. Predictions of CD4 lymphocytes' count in HIV patients from complete blood count. BMC Medical Physics. 2013;13:3.
Prieto S, Rodríguez J, Correa C, Soracipa Y. Diagnosis of cervical cells based on fractal and Euclidian geometrical measurements: Intrinsic Geometric Cellular Organization. BMC Medical Physics. 2014;14(2):1-9.
Velásquez J, Prieto S, Correa C, Domínguez D, Cardona D, Melo M, et al. Geometrical nuclear diagnosis and total paths of cervical cell evolution from normality to cancer. J Cancer Res Ther. 2015;11(1):98-104.
Correa C, Rodríguez J, Prieto S, Álvarez L, Ospino B, Munévar A, et al. Geometric diagnosis of erythrocyte morphophysiology. J Med Med Sci. 2012;3(11):715-20.
Rodríguez J, Prieto S, Correa C, Bernal P, Puerta G, Vitery S, et al. Theoretical generalization of normal and sick coronary arteries with fractal dimensions and the arterial intrinsic mathematical harmony. BMC Med Phys. 2010;10:1-6.