2018, Number 3
<< Back Next >>
Enf Infec Microbiol 2018; 38 (3)
Candida albicans resistence mechanisms, tools for its analysis
Pinilla BG, Esteban MJ, Navarrete OJ, Muñoz MLC, Lindarte CDA, Molano AJA, Montes CJM
Language: Spanish
References: 54
Page: 86-92
PDF size: 204.14 Kb.
ABSTRACT
Candida albicans is a commensal yeast of the human microbiota, but that in immunosuppressed patients can
cause localized and systemic infections. It has the ability to form a biofilm, through the production of extracellular
polysaccharides that allow it to adhere to virtually any type of surface, live in communities and evade the action of
the immune system. This capacity increases its resistance to antimicrobial molecules compared to microorganisms
in free or planktonic state. Fluconazole and amphotericin b are the main drugs used against the infection caused by
this microorganism; however, resistance to these antifungals and other azoles is a growing problem.
In this review, proteomics is highlighted as an alternative tool for the analysis of
C. albicans resistance mechanisms.
REFERENCES
Moriyama, B., Gordon, L.A., McCarthy, M. et al., “nih emerging drugs and vaccines for candidemia”, Public Access, 2015, 57 (12): 718-733.
Buitrón, R., Bonifaz, A., Amancio, O. et al., “Correlation between clinical characteristics and mycological tests in the vulvovaginitis by Candida”, Ginecol Obstet Mex, 2007, 75 (2): 68-72.
Ramage, G., Saville, S.P., Thomas, D.P. y López-Ribot, J.L., “Candida biofilms: an update”, Eukaryot Cell, 2005, 4 (4): 633-638.
Nobile, C.J. y Mitchell, A.P., “Genetics and genomics of Candida albicans biofilm formation”, Cell Microbiol, 2006, 8 (9): 1382-1391.
Mújica, M., Finquelievich, J., Jewtuchowicz, V. et al., “Prevalencia de Candida albicans y Candida no albicans en diferentes muestras clínicas”, Rev Argent Microbiol, 2004, 36 (3): 107-112.
Pfaller, M. y Diekema, D., “Epidemiology of invasive candidiasis: a persistent public health problem”, Clin Microbiol Rev, 2007, 20 (1): 133-163.
Chen, L.-Y., Kuo, S.-C., Wu, H.-S. et al., “Associated clinical characteristics of patients with candidemia among different Candida species”, J Microbiol Immunol Infect, 2013, 46 (6): 463-468.
McCarty, T.P. y Pappas, P.G., “Invasive candidiasis”, Infect Dis Clin North Am, 2016, 30 (1): 103-124.
Kaaniche, F.M., Allela, R., Cherif, S. et al., “Invasive candidiasis in critically ill patients”, Trends Anaesth Crit Care, 2016, 11: 1-5.
Gulati, M. y Nobile, C.J., “Candida albicans biofilms: development, regulation, and molecular mechanisms”, Microbes Infect, 2016, 18 (5): 310-321.
Antinori, S., Milazzo, L., Sollima, S., Galli, M. y Corbellino, M., “Candidemia and invasive candidiasis in adults: a narrative review”, Eur J Intern Med, 2016, 34: 21-28.
Sánchez Hernández, E., “Diagnóstico de candidiasis y candidemia en neonatos”, trabajo de grado par optar por el título de bacteriólogo, Pontificia Universidad Javeriana, Bogotá, 2009, disponible en: http://www. javeriana.edu.co/biblos/tesis/ciencias/tesis332.pdf.
Schwarzmüller, T., Ma, B., Hiller, E., Istel, F., Tscherner, M., Brunke, S. et al., Systematic phenotyping of a large- scale Candida glabrata deletion collection reveals novel antifungal tolerance genes”, plos Pathog, 2014, 10 (6): e1004211.
Azanza, J.R. y Montejo, M., “Farmacocinética y farmacodinamia. Interacciones y efectos secundarios. Comparación con otras equinocandinas”, Enferm Infecc Microbiol Clin, 2008, 26 (Suppl. 14): 14-20.
Kinoshita, H., Yoshioka, M., Ihara, F. et al., “Cryptic antifungal compounds active by synergism with polyene antibiotics”, J Biosci Bioeng, Elsevier, 2016, 121 (4): 394-398.
Gallón, J., “Cambios morfológicos e inhibición del crecimiento de Candida albicans en presencia de una solución de sulfato de zinc”, nova, 2015, 13 (23): 7-15.
Baena Del Valle, J., Gómez, C. y Gómez, D., “Coexistencia de Pseudomonas aeruginosa y Candida albicans en infecciones nosocomiales en Cartagena de Indias (Colombia)”, nova, 2011, 9 (15): 1-112.
Salas, I., García, J. y Miranda, K., “Factores de virulencia en cepas Candida albicans”, Rev Costarric Cienc Méd, 2000, 21 (2): 43-49.
Perea, A. y Barberan, J., “Anfotericina b forma liposómica: un perfil farmacocinético exclusivo. Una historia inacabada”, Rev Esp Quimioter, 2012, 25 (1): 17-24.
Brilhante, R.S., Paiva, M.A., Sampaio, C.M. et al., “Azole resistance in Candida spp. isolated from Catú Lake, Ceará, Brazil: an efflux-pump-mediated mechanism”, Brazilian J Microbiol, 2016, 47 (1): 33-38.
Morace, G., Perdoni, F. y Borghi, E., “Antifungal drug resistance in Candida species”, J Glob Antimicrob Resist, 2014, 2 (4): 254-259.
Fernández, T., Silva, S. y Henriques, M., “Candida tropicalis biofilm’s matrix-involvement on its resistance to amphotericin b”, Diagn Microbiol Infect Dis, 2015, 83 (2): 165-169.
Netea, M.G., Brown, G.D., Kullberg, B.J. y Gow, N.A., “An integrated model of the recognition of Candida albicans by the innate immune system”, Nat Rev Microbiol, 2008, 6 (1): 67-78.
Shibata, N., Kobayashi, H. y Suzuki, S., “Immunochemistry of pathogenic yeast, Candida species, focusing on mannan”, Proc Jpn Acad Ser B Phys Biol Sci, 2012, 88 (6): 250-265.
Mothibe, J.V. y Patel, M., “Pathogenic characteristics of Candida albicans isolated from oral cavities of denture wearers and cancer patients wearing oral prostheses”, Microb Pathog, 2017, 110: 128-134.
Bedout, C. y Gómez, B., “Candida y candidiasis invasora: un reto continuo para su diagnóstico temprano”, Infectio, 2010, 14 (2): S159-S171.
Pinilla, G., Bautista, A., Cruz, C. et al., “Determinación de factores de adhesión asociados a la formación de biopelícula en aislamientos clínicos de Staphylococcus aureus y Staphylococcus epidermidis”, nova, 2017, 15 (27): 67-75.
Herrera, M., “El papel del biofilm en el proceso infeccioso y la resistencia”, nova, 2004, 2 (2): 1-108.
García-Sánchez, S., Aubert, S., Iraqui, I., Janbon, G., Ghigo, J.M. y D’Enfert, C., “Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns”, Eukaryot Cell, 2004, 3 (2): 536-545.
Nobile, C.J. y Johnson, A.D., “Candida albicans biofilms and human disease”, Annu Rev Microbiol, 2015, 69: 71-92.
Cantón, E., Msrtin, E. y Espinel-Ingroff, A., “Métodos estandarizados por el clsi para el estudio de la sensibilidad a los antifúngicos (documentos m27-a3, m38-a y m44-a)”, Rev Iberoam Micol, 2007, 15: 1.
Nobile, C.J., Fox, E.P., Nett, J.E. et al., “A recently evolved transcriptional network controls biofilm development in Candida albicans”, Cell, 2012, 148 (1–2): 126-138.
Huang, M. y Mitchell, A., “Marker recycling in Candida albicans through crispr-Cas9-induced marker excision”, mSphere, 2017, 2 (2): e00050-17.
Min, K., Ichikawa, Y., Woolford, C.A. y Mitchell, A.P., “Candida albicans gene deletion with a transient crispr- Cas9 system”, mSphere, 2016, 1 (3): e00130-16.
Hamid, S., Zainab, S., Faryal, R. et al., “Inhibition of secreted aspartyl proteinase activity in biofilms of Candida species by mycogenic silver nanoparticles”, Artif Cells Nanomedicine Biotechnol, 2017, (2016): 1-7.
Tsai, P.W., Yang, C.Y., Chang, H.T. y Lan, C.Y., “Human antimicrobial peptide ll-37 inhibits adhesion of Candida albicans by interacting with yeast cell-wall carbohydrates”, plos One, 2011, 6 (3).
Lattif, A., Pranab, K. y Mukherjee et al., “Lipidomics of Candida albicans biofilms reveals phase-dependent production of phospholipid molecular classes and role for lipid rafts in biofilm formation”, Microbiology, 2011, 157 (11): 3232-3242.
Luis, J. y Pozo, D., “Candidiasis asociada a biopelículas”, Rev Iberoam Micol, 2016, 33 (3): 176-183.
Bedout, C. y Gómez, B., “Candida y candidiasis invasora: un reto continuo para su diagnóstico temprano”, Infectio, 2010, 14 (2): S159-S171.
Muñoz, J.E., Rossi, D.C.P., Ishida, K. et al., “Antifungal activity of the biphosphinic cyclopalladate c7a against Candida albicans yeast forms in vitro and in vivo”, Front Microbiol, 2017, 8: 1-10.
Colombo, A., Cortés, J., Zurita, J. et al., “Recomendaciones para el diagnóstico de la candidemia en América Latina”, Rev Iberoam Micol, 2013, 30 (1): 150-157.
Mojica, T., Sánchez, O. y Bobadilla, L., “La proteómica, otra cara de la genómica”, nova, 2003, 1 (1): 1-116.
Barraza, D., Martínez, A., Padilla, L. et al., “Comparación entre métodos convencionales, chromagar Candida® y el método de la pcr para la identificación de especies de Candida en aislamientos clínicos”, Rev Iberoam Micol, 2011, 28 (1): 36-42.
Safavieh, M., Coarsey, C., Esiobu, N. et al., “Candida detection platforms for clinical and point-of-care applications”, Crit Rev Biotechnol, 2017, 37 (4): 441-458.
Cassone, A., “Vulvovaginal Candida albicans infections: pathogenesis, immunity and vaccine prospects”, An Int J Obstet Gynaecol, 2015, 122 (6): 785-794.
Thomas, D., Bachmann, S. y López-Ribot, J., “Proteomics for the analysis of the Candida albicans biofilm lifestyle”, Proteomics, 2006, 6 (21): 5795–5804.
Bisha, B., Kim, H.J. y Brehm-Stecher, B.F., “Mejora de dna-fish para la detección citométrica de Candida spp.”, J Appl Microbiol, 2011, 110: 881-892.
Pinilla, G., Cubillos, K. y Rodríguez, M., “Bodas de plata de la reacción en cadena de la polimerasa (pcr)”, nova, 2008, 6 (9): 65-75.
García, L., Luna, L., Velasco, T. y Guerra, B., “Nueva reacción en cadena de la polimerasa múltiple para el diagnóstico específico de especies implicadas en la candidiasis humana”, Biomédica, 2017, 37 (2): 200-208.
Taff, H., Mitchell, K., Edward, J. y Andes, D., “Mechanisms of Candida biofilm drug resistance”, Future Microbiol, 2013, 8 (10): 10.2217/fmb.13.101.
Giongo, J.L., De Almeida Vaucher, R., Fausto, V.P. et al., “Anti-Candida activity assessment of pelargonium graveolens oil free and nanoemulsion in biofilm formation in hospital medical supplies”, Microb Pathog, 2016, 100: 170-178.
Abdelhamed, A., Zhang, S., Watkins, T. et al., “Multicenter evaluation of Candida Quickfish bc for identification of Candida species directly from blood culture bottles”, J Clin Microbiol, 2015, 53 (5): 1672-1676.
Rizk, M., Kong, E., Tsui, C. et al., “Candida albicans pathogenesis: fitting within the host-microbe damage response framework”, Infect Immun, 2016, 84 (10): 2724-2739.
Emami, S., Tavangar, P. y Keighobadi, M., “An overview of azoles targeting sterol 14α-demethylase for antileishmanial therapy”, Eur J Med Chem, 2017, 135: 241-259.