2017, Number 1
<< Back Next >>
Enf Infec Microbiol 2017; 37 (1)
Staphylococcus spp biofilm: structure, genetics and control
Constanza ML, Pinilla G, Navarrete J
Language: Spanish
References: 92
Page: 18-29
PDF size: 563.28 Kb.
ABSTRACT
Staphylococcus sp. are human commensals, some species are pathogens, with increased expression of a series
of virulence factors by means of a cell-cell communication mechanism called quorum sensing. Biofilm formation is
facilitate through three steps: first, the bacteria secretes a wide variety of surface proteins of cell adhesion; second,
the microorganisms organize themselves in small aggregates until an extracellular matrix is formed, whose principal
component is the polysaccharide intercellular adhesin (PIA); and lastly, there are a dissemination and colonization
of pathogens in new surfaces during the infectious processes. This structure limits the diffusion of antibiotics and
increases bacterial resistance ten to one thousand times more. Therefore, the antimicrobial therapy usually requires
high doses for prolonged periods, and in some circumstances, the treatment is unsuccessful. New compounds of
a natural, synthetic, or biological origin have been produced to inhibit or impede biofilm formation.
REFERENCES
Otto, M., “Staphylococcus epidermidis pathogenesis”, Methods Mol Biol, 2014, 1106: 17-31.
Tenover, F.C., Gaynes, R.P. Fischetti, V.A., Novick, R.P., Ferretti, J.J., Portnoy, D.A. y Rood, J.I., “The epidemiology of Staphylococcus aureus infections”, en Gram-positive pathogens, asm Press, Washington, 2000, pp. 414-421.
Jones, R.N., “Global epidemiology of antimicrobial resistance among community-acquired and nosocomial pathogens: a five-year summary from the sentry Antimicrobial Surveillance Program (1997-2001)”, Semin Respir Crit Care Med, 2003, 24: 121-134.
N’Diaye, A., Mijouin, L., Hillion, M., Díaz, S., Konto- Ghiorghi, Y., Percoco, G. et al., “Effect of substance p in Staphylococcus aureus and Staphylococcus epidermidis virulence: implication for skin homeostasis”, Front Microbiol, 2016, 7: 506.
Chessa, D., Ganau, G. y Mazzarello, V., “An overview of Staphylococcus epidermidis and Staphylococcus aureus with a focus on developing countries”, J Infect Dev Ctries, 2015, 9: 547-550.
Kleerebezem, M. y Quadri, L.E., “Peptide pheromone- dependent regulation of antimicrobial peptide production in Gram-positive bacteria: a case of multicellular behavior”, Peptides, 2001, 22: 1579-1596.
Monnet, V., Juillard, V. y Gardan, R., “Peptide conversations in Gram-positive bacteria”, Crit Rev Microbiol, 2014, 8: 1-13.
Jayaraman, A. y Wood, T.K., “Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease”, Annu Rev Biomed Eng, 2008, 10: 145-167.
Tsai, C.S. y Winans, S.C., “LuxR-type quorum-sensing regulators that are detached from common scents”, Mol Microbiol, 2010, 77, 1072-1082.
Jiménez, P.N., Koch, G., Thompson, J.A., Xavier, K.B., Cool, R.H. y Quax, W.J., “The multiple signaling systems regulating virulence in pseudomonas aeruginosa”, Microbiol Mol Biol Rev, 2012, 76: 46-65.
Fetzner, S., “Quorum quenching enzymes”, J Biotechnol, 2015, 201: 2-14.
Burnside, K. y Rajagopal, L., “Aspects of eukaryotic-like signaling in Gram-positive cocci: a focus on virulence”, Future Microbiol, 2011, 6: 747-761.
Song, L., Sudhakar, P., Wang, W., Conrads, G., Brock, A., Sun, J. et al., “A genome-wide study of two-component signal transduction systems in eight newly sequenced mutansstreptococci strains”, bmc Genomics, 2012, 13: 128.
Recsei, P., Kreiswirth, B., O’Reilly, M., Schlievert, P., Gruss, A. y Novick, R.P., “Regulation of exoprotein gene expression in Staphylococcus aureus by agr”, Mol Gen Genet, 1986, 202: 58-61.
Le, K.Y. y Otto, M., “Quorum-sensing regulation in staphylococci- an overview”, Front Microbiol, 2015, 6: 1174.
Lyon, G.J. y Novick, R.P., “Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria”, Peptides, 25, 1389-1403.
Zhang, L., Gray, L., Novick, R.P. y Ji, G., “Transmembrane topology of AgrB, the protein involved in the post-translational modification of AgrD in Staphylococcusaureus”, J Biol Chem, 2002, 277: 34736-34742.
Saenz, H.L., Augsburger, V., Vuong, C., Jack, R.W., Götz, F. y Otto, M., “Inducible expression and cellular location of AgrB, a protein involved in the maturation of the staphylococcal quorum-sensing pheromone”, Arch. Microbiol, 2000, 174: 452-455.
Waters, C.M. y Bassler, B.L., “Quorum sensing: cellto- cell communication in bacteria”, Annu Rev Cell Dev Biol, 2005, 21: 319-346.
Jayaraman, A., Wood, T.K., “Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease”, Annu Rev Biomed Eng, 2008, 10: 145-167.
Davies, D.G., “The involvement of cell-to-cell signals in the development of a bacterial biofilm”, Science, 1998, 280: 295-298.
Boles, B.R. y Horswill, A.R., “Staphylococcal biofilm disassembly”, Trends Microbiol, 2011, 19: 449-455.
França, A., Carvalhais, V., Vilanova, M., Pier, G.B. y Cerca, N., “Characterization of an in vitro fed-batch model to obtain cells released from S. epidermidis biofilms”, amb Express, 2016, 6 (1): 23.
Hermanowicz, S.W., “A simple 2D biofilm model yields a variety of morphological features”, Math Biosci, 2001, 169: 1-14.
Donlan, R.M. y Costerton, J.W., “Biofilms: survival mechanisms of clinically relevant microorganisms”, Clin. Microbiol, 2002, 15: 167-193.
Yao, Y., Sturdevant, D.E. y Otto, M., “Genome-wide analysis of gene expression in Staphylococcus epidermidis biofilms: insights into the pathophysiology of S. epidermidis biofilms and the role of phenol-soluble modulins in formation of biofilms”, J Infect Dis, 2005, 191: 289-298.
Vandecasteele, S.J., Peetermans, W.E., Carbonez, A. y Van Eldere, J., “Metabolic activity of Staphylococcus epidermidis is high during initial and low during late experimental foreign-body infection”, J Bacteriol, 2004, 186: 2236-2239.
Murakami, H., Matsumaru, H., Kanamori, M., Hayashi, H. y Ohta, T., “Cell wall-affecting antibiotics induce expression of a novel gene, drp35, in Staphylococcus aureus”, Biochem Biophys Res Commun, 1999, 264: 348-351.
Yarwood, J.M., McCormick, J.K. y Schlievert, P.M., “Identification of a novel two-component regulatory system that acts in global regulation of virulence factors of Staphylococcus aureus”, J Bacteriol, 2001, 183: 1113-1123.
Conlon, P., Geoghegan, J.A., Waters, E.M., McCarthy, H., Rowe, S.E., Davies, J.R. et al., “A role for the A-domainofun processed accumulation associated protein (Aap) in the attachment phase of the Staphylococcus epidermidis biofilm phenotype”, J Bacteriol, 2014, 196: 4268-4275.
Bose, J.L., Lehman, M.K., Fey, P.D. y Bayles, K.W., “Contribution of the Staphylococcus aureus AtlA mand GLmureinhydrolase activities in cell division autolysis, and biofilm formation”, plosone, 2012, 7: e42244.
Gross, M., Cramton, S.E., Gotz, F. y Peschel, A., “Key role of teichoic acid net chargein Staphylococcus aureus colonization of artificial surfaces”, Infect Immun, 2001, 69: 3423-3426.
Weidenmaier, C. y Peschel, A., “Teichoic acids and related cell-wall glycopolymers in Gram positive physiology and host interactions”, Nat Rev Microbiol, 2008, 6: 276-287.
Speziale, P., Pietrocola, G., Foster, T.J. y Geoghegan, J.A., “Protein-based biofilm matrices in Staphylococci”, Front Cell Infect Microbiol, 2014, 4: 171.
Foster, T.J., Geoghegan, J.A., Ganesh, V.K. y Hook, M., “Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus”, Nat Rev Microbiol, 2014, 12: 49-62.
Montanaro, L., Speziale, P., Campoccia, D., Ravaioli, S., Cangini, I., Pietrocola, G., Giannini, S. y Arciola, C.R., “Scenery of Staphylococcus implant infections in orthopedics”, Future Microbiol, 2011, 6: 1329-1349.
Anderson, A.S., Scully, I.L., Buurman, E.T., Eiden, J. y Jansen, K.U., “Staphylococcus aureus clumping factor a remains a viable vaccine target for prevention of S. aureus infection”, M Bio, 2016, 8 (7): e000225.
Hair, P.S., Echague, C.G., Sholl, A.M., Watkins, J.A., Geoghegan, J.A., Foster, T.J. y Cunnion, K.M., “Clumping factor a interaction with complement factor i increases C3b cleavage on the bacterial surface of Staphylococcus aureus and decreases complement-mediated phagocytosis”, Infect Imm, 2010, 78: 1717-1727.
Barbu, E.M., Ganesh, V.K., Gurusiddappa, S., Mackenzie, R.C., Foster, T.J., Sudhof, T.C. y Höök, M., “beta- Neurexin is a ligand for the Staphylococcus aureus mscramm SdrC”, plos Pathog, 2010, 6: e1000726.
Zhang, X., Wu, M., Zhuo, W., Gu, J., Zhang, S., Ge, J. y Yang, M., “Crystal structures of Bbp from Staphylococcus aureus reveal the ligand binding mechanism with fibrinogen α”, Protein Cell, 2015, 6: 757-766.
Herman-Bausier, P. y Dufrêne, Y.F., “Atomic force microscopy reveals a dual collagen-binding activity for the staphylococcal surface protein SdrF”, Mol Microbiol, 2016, 99: 611-621.
Bowden, M.G., Heuck, A.P., Ponnuraj, K., Kolosova, E., Choe, D., Gurusiddappa, S., Narayana, S.V., Johnson, A.E. y Höök, M., “Evidence for the ‘dock, lock, and latch’ ligand binding mechanism of the staphylococcal microbial surfacecomponent recognizing adhesive matrix molecules (mscramm) SdrG”, J Biol Chem, 2008, 4 (283): 638-647.
Corrigan, R.M., Miajlovic, H. y Foster, T.J., “Surface proteins that promote adherence of Staphylococcus aureus to human desquamated nasal epithelial cells”, bmc Microbiol, 2009, 9: 22.
Xu, Y., Rivas, J.M., Brown, E.L., Liang, X. y Höök, M., “Virulence potential of the staphylococcal adhesin cna in experimental arthritis is determined by its affinity for collagen”, J Infect Dis, 2004, 189: 2323-2333.
Mascari, L.M. y Ross, J.M., “Quantification of staphylococcal- collagen binding interactions in whole blood by use of a confocal microscopy shear-adhesion assay”, J Infect Dis, 2003, 188: 98-107.
Herman-Bausier, P., El-Kirat-Chatel, S., Foster, T.J., Geoghegan, J.A. y Dufrêne, Y.F., “Staphylococcus aureus fibronectin-binding protein a mediates cell-cell adhesion through low-affinity homophilic bonds”, M Bio, 2015, 26 (6): e00413-415.
Burke, F.M., Di Poto, A., Speziale, P. y Foster, T.J., “The A domain of fibronectin-binding protein b of Staphylococcus aureus contains a novel fibronectin binding site”, febs J, 2011, 278: 2359-2371.
Yu, S., Zhang, H., Yao, D., Liu, W., Wang, X., Chen, X. et al., “Identification of cd4(+) T-cell epitopes on iron-regulated surface determinant b of Staphylococcus aureus”, Microb Pathog, 2015, 89: 108-113.
Whitehouse, J., Flaxman, A., Rollier, C., O’Shea, M.K., Fallowfield, J., Lindsay, M. et al., “Population variation in anti-S. aureus IgG isotypes influences surface protein a mediated immune subversion”, Vaccine, 2016, 4 (34): 1792-1799.
Martin, F.J., Gómez, M.I., Wetzel, D.M. et al., “Staphylococcus aureus activates type i ifn signaling in mice and humans through the Xr repeated sequences of protein”, A J Clin Invest, 2009, 119: 1931-1939.
Merino, N., Toledo-Arana, A., Vergara-Irigaray, M. et al., “Protein a-mediated multicellular behavior in Staphylococcus aureus”, J Bacteriol, 2009, 191: 832-843.
Dunne, W.M., “Bacterial adhesion: seen any good biofilms lately?”, Clin Microbiol Rev, 2002, 15: 155-166.
Pavithra, D. y Doble, M., “Biofilm formation, bacterial adhesion and host response on polymeric implants: issues and prevention”, Biomed Mater, 2008, 3: 034003.
Pintelon, T.R., Picioreanu, C., Van Loosdrecht, M.C. y Johns, M.L., “The effect of biofilm permeability on bio-clogging of porous media”, Biotechnol Bioeng, 2012, 109: 1031-1042.
Stacy, A., McNally, L., Darch, S.E., Brown, S.P. y Whiteley, M., “The biogeography of polymicrobial infection”, Nat Rev Microbiol, 2016, 14: 93-105.
Stewart, E.J., Ganesan, M., Younger, J.G. y Solomon, M.J., “Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly”, Sci Rep, 2015, 5: 13081.
Flemming, H.C. y Wingender, J., “The biofilm matrix”, Nat Rev Microbiol, 2010, 8: 623-633.
Cue, D., Lei, M.G. y Lee, C.Y., “Genetic regulation of the intercellular adhesion locus in staphylococci”, Front Cell Infect Microbiol, 2012, 2: 38.
Arciola, C.R., Campoccia, D., Ravaioli, S. y Montanaro, L., “Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects”, Front Cell Infect Microbiol, 2015, 5: 7.
Otto, M., “Molecular basis of Staphylococcus epidermidis infections”, Semin Immunopathol, 2012, 34: 201-214.
Rohde, H., Frankenberger, S., Zähringer, U. y Mack, D., “Structure, function and contribution of polysaccharide intercellular adhesion (pia) to Staphylococcus epidermidis biofilm formation and pathogenesis of biomaterial associated infections”, Eur J Cell Biol, 2010, 89: 103-111.
Ruiz de los Mozos, I., Vergara-Irigaray, M., Segura, V., Villanueva, M., Bitarte, N., Saramago, M. et al., “Basw pairing interaction between 5’-and 3’-utrs controls icaR mrna translation in Staphylococcus aureus”, plos Genet, 2013, 9: e1004001.
Geoghegan, J.A., Corrigan, R.M., Gruszka, D.T., Speziale, P., O’Hara, J.P., Potts, J.R., et al., “Role of surface protein SasG in biofilm formation by Staphylococcus aureus”, J Bacteriol, 2010, 192: 5663-5673.
Costerton, J.W., Stewart, P.S. y Greenberg, E.P., “Bacterial biofilms: a common cause of persistent infections”, Science, 1999, 284: 1318-1322.
Merino, N., Toledo-Arana, A., Vergara-Irigaray, M., Valle, J., Solano, C., Calvo, E. et al., “Protein a-mediated multicellular behavior in Staphylococcus aureus”, J Bacteriol, 2009, 191: 832-843.
O’Neill, E., Pozzi, C., Houston, P., Humphreys, H., Robinson, D.A., Loughman, A. et al., “A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin- bindingproteins, fnbpa and fnbpb”, J Bacteriol, 2008, 190: 3835-3850.
Whelan, F. y Potts, J.R., “Two repetitive, biofilm-forming proteins from Staphylococci: from disorder to extension”, Biochem Soc Trans, 2015, 43: 861-866.
Fridkin, S.K., Edwards, J.R., Tenover, F.C., Gaynes, R.P. y McGowan, J.E. Jr., “Antimicrobial resistance prevalence rates in hospital antibiograms reflect prevalence rates among pathogens associated with hospital-acquired infections. Intensive Care Antimicrobial Resistance Epidemiology (icare) Project. National Nosocomial Infections Surveillance (nnis) System Hospitals”, Clin Infect Dis, 2001, 33: 324-330.
Ramasamy, M., Lee, J.H. y Lee, J., “Potent antimicrobial and antibiofilm activities of bacteriogenically synthesized gold-silvernanoparticles against pathogenic bacteria and their physiochemical characterizations”, J Biomater Appl, 2016, 31: 366-378.
Padmavathi, A.R. y Pandian, S.K., “Antibiofilm activity of biosurfactant producing coral associated bacteria isolated from gulf of mannar”, Indian J Microbiol, 2014, 54: 376-382.
Keren, I., Kaldalu, N., Spoering, A., Wang, Y. y Lewis, K., “Persister cells and tolerance to antimicrobials”, fems Microbiol Lett, 2004, 230: 13-18.
Kaplan, J.B., Ragunath, C., Ramasubbu, N. y Fine, D.H., “Detachment of actinobacillus actinomycetem comitans biofilm cells by an endogenous beta-hexosaminidase activity”, J Bacteriol, 2003, 185: 4693-4698.
Chaignon, P., Sadovskaya, I., Ragunah, Ch., Ramasubbu, N., Kaplan, J.B. y Jabbouri, S., “Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition”, Appl Microbiol Biotechnol, 2007, 75: 125-132.
Boles, B.R. y Horswill, A.R., “Staphylococcal biofilm disassembly”, Trends Microbiol, 2011, 19: 449-455.
Izano, E.A., Amarante, M.A., Kher, W.B. y Kaplan, J.B., “Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular dna in Staphylococcus aureus and Staphylococcus epidermidis biofilms”, Appl Environ Microbiol, 2008, 74: 470-476.
Otto, M., “Staphylococcal biofilms”, Curr Top Microbiol Immunol, 2008, 322: 207-228.
Kelly-Quintos, C., Cavacini, L.A., Posner, M.R., Goldmann, D. y Pier, G.B., “Characterization of the opsonic and protective activity against Staphylococcus aureus of fully human monoclonal antibodies specific for the bacterial surface polysaccharide poly-N-acetylglucosamine”, Infect Immun, 2006, 74: 2742-2750.
Provenza, G., Provenzano, M., Visai, L., Burke, F.M., Geoghegan, J.A., Stravalaci, M., Gobbi, M., Mazzini, G., Arciola, C.R., Foster, T.J. y Speziale, P., “Functional analysis of a murine monoclonal antibody against the repetitive region of the fibronectin-binding adhesinsfibronectin- binding protein a and fibronectin-binding protein b from Staphylococcus aureus”, febs J, 2010, 277: 4490-4505.
Weisman, L.E., Thackray, H.M., García-Prats, J.A., Nesin, M., Schneider, J.H., Fretz, J. et al., “Phase 1/2 double- blind, placebo-controlled, dose escalation, safety, and pharmacokinetic study of pagibaximab (bsyx-a110), an antistaphylococcal monoclonal antibody for the prevention of staphylococcal bloodstream infections, in very-low-birth-weight neonates”, Antimicrob Agents Chemother, 2009, 53: 2879-2886.
Alipour, M., Suntres, Z.E. y Omri, A., “Importance of dnase and alginate lyase for enhancing free and liposome encapsulated aminoglycoside activity against Pseudomonas aeruginosa”, J Antimicrob Chemother, 2009, 64: 317-325.
Alkawash, M.A., Soothill, J.S. y Schiller, N.L., “Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms”, apmis, 2006, 114: 131-138.
Barraud, N., Hassett, D.J., Hwang, S.H., Rice, S.A., Kjelleberg, S. y Webb, J.S., “Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa”, J Bacteriol, 2006, 188: 7344-7353.
Kaplan, J.B., “Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses”, J Dent Res, 2010, 89: 205-218.
Thoendel, M., Kavanaugh, J.S., Flack, C.E. y Horswill, A.R., “Peptide signaling in the staphylococci”, Chem Rev”, 2011, 111: 117-151.
Jiang, P., Li, J., Han, F., Duan, G., Lu, X., Gu, Y. y Yu, W., “Antibiofilm activity an exopolysaccharide from marine bacterium Vibrio sp. qu101”, plos One, 2011, 7 (6): e18514.
Dheilly, A., Soum-Soutéra, E., Klein, G.L., Bazire, A., Compère, C., Haras, D. y Dufour, A., “Antibiofilm activity of the marine bacterium Pseudoalteromonas sp. strain 3J6”, Appl Environ Microbiol, 2010, 76: 3452-3461.
Das, P., Mukherjee, S. y Sen, R., “Antiadhesive action of a marine microbial surfactant”, Colloids Surf B Biointerfaces, 2009, 71: 183-186.
Valle, J., Da Re, S., Henry, N., Fontaine, T., Balestrino, D., Latour-Lambert, P. y Ghigo, J.M., “Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide”, Proc Nat Acad Sci, 2006, 103: 12558-12563.
Lohner, K., “Membrane-active antimicrobial peptides as template structures for novel antibiotic agents”, Curr Top Med Chem, 2016 [epub ahead of print].
Ribeiro, S.M., Felício, M.R., Boas, E.V., Gonçalves, S., Costa, F.F., Samy, R.P., Santos, N.C. y Franco, O.L., “New frontiers for anti-biofilm drug development”, Pharmacol Ther, 2016, pii: S0163-7258(16)00035-8.
Burnside, K. y Rajagopal, L., “Aspects of eukaryotic-like signaling in Gram-positive cocci: a focus on virulence”, Future Microbiol, 2011, 6: 747-761.
Gedik, A.H., Cakir, E., Gokdemir, Y., Uyan, Z.S., Kocyigit, A., Torun, E., Karadag, B., Ersu, R. y Karakoc, F., “Cathelicidin (ll37) and human b2-defensin levels of children with post-infectious bronchiolitis obiterans”, Clin Respir J, 2015, doi: 10.1111/crj.12331.