2017, Número 1
<< Anterior Siguiente >>
Enf Infec Microbiol 2017; 37 (1)
Biopelícula en Staphylococcus spp.: estructura, genética y control
Constanza ML, Pinilla G, Navarrete J
Idioma: Español
Referencias bibliográficas: 92
Paginas: 18-29
Archivo PDF: 563.28 Kb.
RESUMEN
Los
Staphylococcus sp. son comensales humanos, algunas especies son patógenas, que tienen incrementada la
expresión de una serie de factores de virulencia. Mediante un mecanismo de comunicación célula-célula denominada
quorum sensing, favorece la regulación y formación de una biopelícula mediante tres pasos: en el primero la
bacteria secreta una gran variedad de proteínas de superficie de adhesión celular; en la segunda los microorganismos
se organizan en pequeños agregados hasta llegar a formar una matriz extracelular cuyo principal componente
son los polisacáridos de adhesión intracelular (PIA); y por último, la diseminación y colonización del patógeno en
nuevas superficies durante los procesos infecciosos. Esta estructura limita la difusión del antibiótico e incrementa
la resistencia bacteriana de diez a mil veces más, por lo que se requieren altas dosis y durante tiempos prolongados
de terapia antimicrobiana; en algunas ocasiones, el tratamiento falla por la persistencia de las infecciones asociadas
a ésta. Nuevos compuestos tanto naturales, sintéticos o biológicos han sido enfocados para inhibir o impedir
la formación de biopelícula.
REFERENCIAS (EN ESTE ARTÍCULO)
Otto, M., “Staphylococcus epidermidis pathogenesis”, Methods Mol Biol, 2014, 1106: 17-31.
Tenover, F.C., Gaynes, R.P. Fischetti, V.A., Novick, R.P., Ferretti, J.J., Portnoy, D.A. y Rood, J.I., “The epidemiology of Staphylococcus aureus infections”, en Gram-positive pathogens, asm Press, Washington, 2000, pp. 414-421.
Jones, R.N., “Global epidemiology of antimicrobial resistance among community-acquired and nosocomial pathogens: a five-year summary from the sentry Antimicrobial Surveillance Program (1997-2001)”, Semin Respir Crit Care Med, 2003, 24: 121-134.
N’Diaye, A., Mijouin, L., Hillion, M., Díaz, S., Konto- Ghiorghi, Y., Percoco, G. et al., “Effect of substance p in Staphylococcus aureus and Staphylococcus epidermidis virulence: implication for skin homeostasis”, Front Microbiol, 2016, 7: 506.
Chessa, D., Ganau, G. y Mazzarello, V., “An overview of Staphylococcus epidermidis and Staphylococcus aureus with a focus on developing countries”, J Infect Dev Ctries, 2015, 9: 547-550.
Kleerebezem, M. y Quadri, L.E., “Peptide pheromone- dependent regulation of antimicrobial peptide production in Gram-positive bacteria: a case of multicellular behavior”, Peptides, 2001, 22: 1579-1596.
Monnet, V., Juillard, V. y Gardan, R., “Peptide conversations in Gram-positive bacteria”, Crit Rev Microbiol, 2014, 8: 1-13.
Jayaraman, A. y Wood, T.K., “Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease”, Annu Rev Biomed Eng, 2008, 10: 145-167.
Tsai, C.S. y Winans, S.C., “LuxR-type quorum-sensing regulators that are detached from common scents”, Mol Microbiol, 2010, 77, 1072-1082.
Jiménez, P.N., Koch, G., Thompson, J.A., Xavier, K.B., Cool, R.H. y Quax, W.J., “The multiple signaling systems regulating virulence in pseudomonas aeruginosa”, Microbiol Mol Biol Rev, 2012, 76: 46-65.
Fetzner, S., “Quorum quenching enzymes”, J Biotechnol, 2015, 201: 2-14.
Burnside, K. y Rajagopal, L., “Aspects of eukaryotic-like signaling in Gram-positive cocci: a focus on virulence”, Future Microbiol, 2011, 6: 747-761.
Song, L., Sudhakar, P., Wang, W., Conrads, G., Brock, A., Sun, J. et al., “A genome-wide study of two-component signal transduction systems in eight newly sequenced mutansstreptococci strains”, bmc Genomics, 2012, 13: 128.
Recsei, P., Kreiswirth, B., O’Reilly, M., Schlievert, P., Gruss, A. y Novick, R.P., “Regulation of exoprotein gene expression in Staphylococcus aureus by agr”, Mol Gen Genet, 1986, 202: 58-61.
Le, K.Y. y Otto, M., “Quorum-sensing regulation in staphylococci- an overview”, Front Microbiol, 2015, 6: 1174.
Lyon, G.J. y Novick, R.P., “Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria”, Peptides, 25, 1389-1403.
Zhang, L., Gray, L., Novick, R.P. y Ji, G., “Transmembrane topology of AgrB, the protein involved in the post-translational modification of AgrD in Staphylococcusaureus”, J Biol Chem, 2002, 277: 34736-34742.
Saenz, H.L., Augsburger, V., Vuong, C., Jack, R.W., Götz, F. y Otto, M., “Inducible expression and cellular location of AgrB, a protein involved in the maturation of the staphylococcal quorum-sensing pheromone”, Arch. Microbiol, 2000, 174: 452-455.
Waters, C.M. y Bassler, B.L., “Quorum sensing: cellto- cell communication in bacteria”, Annu Rev Cell Dev Biol, 2005, 21: 319-346.
Jayaraman, A., Wood, T.K., “Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease”, Annu Rev Biomed Eng, 2008, 10: 145-167.
Davies, D.G., “The involvement of cell-to-cell signals in the development of a bacterial biofilm”, Science, 1998, 280: 295-298.
Boles, B.R. y Horswill, A.R., “Staphylococcal biofilm disassembly”, Trends Microbiol, 2011, 19: 449-455.
França, A., Carvalhais, V., Vilanova, M., Pier, G.B. y Cerca, N., “Characterization of an in vitro fed-batch model to obtain cells released from S. epidermidis biofilms”, amb Express, 2016, 6 (1): 23.
Hermanowicz, S.W., “A simple 2D biofilm model yields a variety of morphological features”, Math Biosci, 2001, 169: 1-14.
Donlan, R.M. y Costerton, J.W., “Biofilms: survival mechanisms of clinically relevant microorganisms”, Clin. Microbiol, 2002, 15: 167-193.
Yao, Y., Sturdevant, D.E. y Otto, M., “Genome-wide analysis of gene expression in Staphylococcus epidermidis biofilms: insights into the pathophysiology of S. epidermidis biofilms and the role of phenol-soluble modulins in formation of biofilms”, J Infect Dis, 2005, 191: 289-298.
Vandecasteele, S.J., Peetermans, W.E., Carbonez, A. y Van Eldere, J., “Metabolic activity of Staphylococcus epidermidis is high during initial and low during late experimental foreign-body infection”, J Bacteriol, 2004, 186: 2236-2239.
Murakami, H., Matsumaru, H., Kanamori, M., Hayashi, H. y Ohta, T., “Cell wall-affecting antibiotics induce expression of a novel gene, drp35, in Staphylococcus aureus”, Biochem Biophys Res Commun, 1999, 264: 348-351.
Yarwood, J.M., McCormick, J.K. y Schlievert, P.M., “Identification of a novel two-component regulatory system that acts in global regulation of virulence factors of Staphylococcus aureus”, J Bacteriol, 2001, 183: 1113-1123.
Conlon, P., Geoghegan, J.A., Waters, E.M., McCarthy, H., Rowe, S.E., Davies, J.R. et al., “A role for the A-domainofun processed accumulation associated protein (Aap) in the attachment phase of the Staphylococcus epidermidis biofilm phenotype”, J Bacteriol, 2014, 196: 4268-4275.
Bose, J.L., Lehman, M.K., Fey, P.D. y Bayles, K.W., “Contribution of the Staphylococcus aureus AtlA mand GLmureinhydrolase activities in cell division autolysis, and biofilm formation”, plosone, 2012, 7: e42244.
Gross, M., Cramton, S.E., Gotz, F. y Peschel, A., “Key role of teichoic acid net chargein Staphylococcus aureus colonization of artificial surfaces”, Infect Immun, 2001, 69: 3423-3426.
Weidenmaier, C. y Peschel, A., “Teichoic acids and related cell-wall glycopolymers in Gram positive physiology and host interactions”, Nat Rev Microbiol, 2008, 6: 276-287.
Speziale, P., Pietrocola, G., Foster, T.J. y Geoghegan, J.A., “Protein-based biofilm matrices in Staphylococci”, Front Cell Infect Microbiol, 2014, 4: 171.
Foster, T.J., Geoghegan, J.A., Ganesh, V.K. y Hook, M., “Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus”, Nat Rev Microbiol, 2014, 12: 49-62.
Montanaro, L., Speziale, P., Campoccia, D., Ravaioli, S., Cangini, I., Pietrocola, G., Giannini, S. y Arciola, C.R., “Scenery of Staphylococcus implant infections in orthopedics”, Future Microbiol, 2011, 6: 1329-1349.
Anderson, A.S., Scully, I.L., Buurman, E.T., Eiden, J. y Jansen, K.U., “Staphylococcus aureus clumping factor a remains a viable vaccine target for prevention of S. aureus infection”, M Bio, 2016, 8 (7): e000225.
Hair, P.S., Echague, C.G., Sholl, A.M., Watkins, J.A., Geoghegan, J.A., Foster, T.J. y Cunnion, K.M., “Clumping factor a interaction with complement factor i increases C3b cleavage on the bacterial surface of Staphylococcus aureus and decreases complement-mediated phagocytosis”, Infect Imm, 2010, 78: 1717-1727.
Barbu, E.M., Ganesh, V.K., Gurusiddappa, S., Mackenzie, R.C., Foster, T.J., Sudhof, T.C. y Höök, M., “beta- Neurexin is a ligand for the Staphylococcus aureus mscramm SdrC”, plos Pathog, 2010, 6: e1000726.
Zhang, X., Wu, M., Zhuo, W., Gu, J., Zhang, S., Ge, J. y Yang, M., “Crystal structures of Bbp from Staphylococcus aureus reveal the ligand binding mechanism with fibrinogen α”, Protein Cell, 2015, 6: 757-766.
Herman-Bausier, P. y Dufrêne, Y.F., “Atomic force microscopy reveals a dual collagen-binding activity for the staphylococcal surface protein SdrF”, Mol Microbiol, 2016, 99: 611-621.
Bowden, M.G., Heuck, A.P., Ponnuraj, K., Kolosova, E., Choe, D., Gurusiddappa, S., Narayana, S.V., Johnson, A.E. y Höök, M., “Evidence for the ‘dock, lock, and latch’ ligand binding mechanism of the staphylococcal microbial surfacecomponent recognizing adhesive matrix molecules (mscramm) SdrG”, J Biol Chem, 2008, 4 (283): 638-647.
Corrigan, R.M., Miajlovic, H. y Foster, T.J., “Surface proteins that promote adherence of Staphylococcus aureus to human desquamated nasal epithelial cells”, bmc Microbiol, 2009, 9: 22.
Xu, Y., Rivas, J.M., Brown, E.L., Liang, X. y Höök, M., “Virulence potential of the staphylococcal adhesin cna in experimental arthritis is determined by its affinity for collagen”, J Infect Dis, 2004, 189: 2323-2333.
Mascari, L.M. y Ross, J.M., “Quantification of staphylococcal- collagen binding interactions in whole blood by use of a confocal microscopy shear-adhesion assay”, J Infect Dis, 2003, 188: 98-107.
Herman-Bausier, P., El-Kirat-Chatel, S., Foster, T.J., Geoghegan, J.A. y Dufrêne, Y.F., “Staphylococcus aureus fibronectin-binding protein a mediates cell-cell adhesion through low-affinity homophilic bonds”, M Bio, 2015, 26 (6): e00413-415.
Burke, F.M., Di Poto, A., Speziale, P. y Foster, T.J., “The A domain of fibronectin-binding protein b of Staphylococcus aureus contains a novel fibronectin binding site”, febs J, 2011, 278: 2359-2371.
Yu, S., Zhang, H., Yao, D., Liu, W., Wang, X., Chen, X. et al., “Identification of cd4(+) T-cell epitopes on iron-regulated surface determinant b of Staphylococcus aureus”, Microb Pathog, 2015, 89: 108-113.
Whitehouse, J., Flaxman, A., Rollier, C., O’Shea, M.K., Fallowfield, J., Lindsay, M. et al., “Population variation in anti-S. aureus IgG isotypes influences surface protein a mediated immune subversion”, Vaccine, 2016, 4 (34): 1792-1799.
Martin, F.J., Gómez, M.I., Wetzel, D.M. et al., “Staphylococcus aureus activates type i ifn signaling in mice and humans through the Xr repeated sequences of protein”, A J Clin Invest, 2009, 119: 1931-1939.
Merino, N., Toledo-Arana, A., Vergara-Irigaray, M. et al., “Protein a-mediated multicellular behavior in Staphylococcus aureus”, J Bacteriol, 2009, 191: 832-843.
Dunne, W.M., “Bacterial adhesion: seen any good biofilms lately?”, Clin Microbiol Rev, 2002, 15: 155-166.
Pavithra, D. y Doble, M., “Biofilm formation, bacterial adhesion and host response on polymeric implants: issues and prevention”, Biomed Mater, 2008, 3: 034003.
Pintelon, T.R., Picioreanu, C., Van Loosdrecht, M.C. y Johns, M.L., “The effect of biofilm permeability on bio-clogging of porous media”, Biotechnol Bioeng, 2012, 109: 1031-1042.
Stacy, A., McNally, L., Darch, S.E., Brown, S.P. y Whiteley, M., “The biogeography of polymicrobial infection”, Nat Rev Microbiol, 2016, 14: 93-105.
Stewart, E.J., Ganesan, M., Younger, J.G. y Solomon, M.J., “Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly”, Sci Rep, 2015, 5: 13081.
Flemming, H.C. y Wingender, J., “The biofilm matrix”, Nat Rev Microbiol, 2010, 8: 623-633.
Cue, D., Lei, M.G. y Lee, C.Y., “Genetic regulation of the intercellular adhesion locus in staphylococci”, Front Cell Infect Microbiol, 2012, 2: 38.
Arciola, C.R., Campoccia, D., Ravaioli, S. y Montanaro, L., “Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects”, Front Cell Infect Microbiol, 2015, 5: 7.
Otto, M., “Molecular basis of Staphylococcus epidermidis infections”, Semin Immunopathol, 2012, 34: 201-214.
Rohde, H., Frankenberger, S., Zähringer, U. y Mack, D., “Structure, function and contribution of polysaccharide intercellular adhesion (pia) to Staphylococcus epidermidis biofilm formation and pathogenesis of biomaterial associated infections”, Eur J Cell Biol, 2010, 89: 103-111.
Ruiz de los Mozos, I., Vergara-Irigaray, M., Segura, V., Villanueva, M., Bitarte, N., Saramago, M. et al., “Basw pairing interaction between 5’-and 3’-utrs controls icaR mrna translation in Staphylococcus aureus”, plos Genet, 2013, 9: e1004001.
Geoghegan, J.A., Corrigan, R.M., Gruszka, D.T., Speziale, P., O’Hara, J.P., Potts, J.R., et al., “Role of surface protein SasG in biofilm formation by Staphylococcus aureus”, J Bacteriol, 2010, 192: 5663-5673.
Costerton, J.W., Stewart, P.S. y Greenberg, E.P., “Bacterial biofilms: a common cause of persistent infections”, Science, 1999, 284: 1318-1322.
Merino, N., Toledo-Arana, A., Vergara-Irigaray, M., Valle, J., Solano, C., Calvo, E. et al., “Protein a-mediated multicellular behavior in Staphylococcus aureus”, J Bacteriol, 2009, 191: 832-843.
O’Neill, E., Pozzi, C., Houston, P., Humphreys, H., Robinson, D.A., Loughman, A. et al., “A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin- bindingproteins, fnbpa and fnbpb”, J Bacteriol, 2008, 190: 3835-3850.
Whelan, F. y Potts, J.R., “Two repetitive, biofilm-forming proteins from Staphylococci: from disorder to extension”, Biochem Soc Trans, 2015, 43: 861-866.
Fridkin, S.K., Edwards, J.R., Tenover, F.C., Gaynes, R.P. y McGowan, J.E. Jr., “Antimicrobial resistance prevalence rates in hospital antibiograms reflect prevalence rates among pathogens associated with hospital-acquired infections. Intensive Care Antimicrobial Resistance Epidemiology (icare) Project. National Nosocomial Infections Surveillance (nnis) System Hospitals”, Clin Infect Dis, 2001, 33: 324-330.
Ramasamy, M., Lee, J.H. y Lee, J., “Potent antimicrobial and antibiofilm activities of bacteriogenically synthesized gold-silvernanoparticles against pathogenic bacteria and their physiochemical characterizations”, J Biomater Appl, 2016, 31: 366-378.
Padmavathi, A.R. y Pandian, S.K., “Antibiofilm activity of biosurfactant producing coral associated bacteria isolated from gulf of mannar”, Indian J Microbiol, 2014, 54: 376-382.
Keren, I., Kaldalu, N., Spoering, A., Wang, Y. y Lewis, K., “Persister cells and tolerance to antimicrobials”, fems Microbiol Lett, 2004, 230: 13-18.
Kaplan, J.B., Ragunath, C., Ramasubbu, N. y Fine, D.H., “Detachment of actinobacillus actinomycetem comitans biofilm cells by an endogenous beta-hexosaminidase activity”, J Bacteriol, 2003, 185: 4693-4698.
Chaignon, P., Sadovskaya, I., Ragunah, Ch., Ramasubbu, N., Kaplan, J.B. y Jabbouri, S., “Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition”, Appl Microbiol Biotechnol, 2007, 75: 125-132.
Boles, B.R. y Horswill, A.R., “Staphylococcal biofilm disassembly”, Trends Microbiol, 2011, 19: 449-455.
Izano, E.A., Amarante, M.A., Kher, W.B. y Kaplan, J.B., “Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular dna in Staphylococcus aureus and Staphylococcus epidermidis biofilms”, Appl Environ Microbiol, 2008, 74: 470-476.
Otto, M., “Staphylococcal biofilms”, Curr Top Microbiol Immunol, 2008, 322: 207-228.
Kelly-Quintos, C., Cavacini, L.A., Posner, M.R., Goldmann, D. y Pier, G.B., “Characterization of the opsonic and protective activity against Staphylococcus aureus of fully human monoclonal antibodies specific for the bacterial surface polysaccharide poly-N-acetylglucosamine”, Infect Immun, 2006, 74: 2742-2750.
Provenza, G., Provenzano, M., Visai, L., Burke, F.M., Geoghegan, J.A., Stravalaci, M., Gobbi, M., Mazzini, G., Arciola, C.R., Foster, T.J. y Speziale, P., “Functional analysis of a murine monoclonal antibody against the repetitive region of the fibronectin-binding adhesinsfibronectin- binding protein a and fibronectin-binding protein b from Staphylococcus aureus”, febs J, 2010, 277: 4490-4505.
Weisman, L.E., Thackray, H.M., García-Prats, J.A., Nesin, M., Schneider, J.H., Fretz, J. et al., “Phase 1/2 double- blind, placebo-controlled, dose escalation, safety, and pharmacokinetic study of pagibaximab (bsyx-a110), an antistaphylococcal monoclonal antibody for the prevention of staphylococcal bloodstream infections, in very-low-birth-weight neonates”, Antimicrob Agents Chemother, 2009, 53: 2879-2886.
Alipour, M., Suntres, Z.E. y Omri, A., “Importance of dnase and alginate lyase for enhancing free and liposome encapsulated aminoglycoside activity against Pseudomonas aeruginosa”, J Antimicrob Chemother, 2009, 64: 317-325.
Alkawash, M.A., Soothill, J.S. y Schiller, N.L., “Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms”, apmis, 2006, 114: 131-138.
Barraud, N., Hassett, D.J., Hwang, S.H., Rice, S.A., Kjelleberg, S. y Webb, J.S., “Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa”, J Bacteriol, 2006, 188: 7344-7353.
Kaplan, J.B., “Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses”, J Dent Res, 2010, 89: 205-218.
Thoendel, M., Kavanaugh, J.S., Flack, C.E. y Horswill, A.R., “Peptide signaling in the staphylococci”, Chem Rev”, 2011, 111: 117-151.
Jiang, P., Li, J., Han, F., Duan, G., Lu, X., Gu, Y. y Yu, W., “Antibiofilm activity an exopolysaccharide from marine bacterium Vibrio sp. qu101”, plos One, 2011, 7 (6): e18514.
Dheilly, A., Soum-Soutéra, E., Klein, G.L., Bazire, A., Compère, C., Haras, D. y Dufour, A., “Antibiofilm activity of the marine bacterium Pseudoalteromonas sp. strain 3J6”, Appl Environ Microbiol, 2010, 76: 3452-3461.
Das, P., Mukherjee, S. y Sen, R., “Antiadhesive action of a marine microbial surfactant”, Colloids Surf B Biointerfaces, 2009, 71: 183-186.
Valle, J., Da Re, S., Henry, N., Fontaine, T., Balestrino, D., Latour-Lambert, P. y Ghigo, J.M., “Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide”, Proc Nat Acad Sci, 2006, 103: 12558-12563.
Lohner, K., “Membrane-active antimicrobial peptides as template structures for novel antibiotic agents”, Curr Top Med Chem, 2016 [epub ahead of print].
Ribeiro, S.M., Felício, M.R., Boas, E.V., Gonçalves, S., Costa, F.F., Samy, R.P., Santos, N.C. y Franco, O.L., “New frontiers for anti-biofilm drug development”, Pharmacol Ther, 2016, pii: S0163-7258(16)00035-8.
Burnside, K. y Rajagopal, L., “Aspects of eukaryotic-like signaling in Gram-positive cocci: a focus on virulence”, Future Microbiol, 2011, 6: 747-761.
Gedik, A.H., Cakir, E., Gokdemir, Y., Uyan, Z.S., Kocyigit, A., Torun, E., Karadag, B., Ersu, R. y Karakoc, F., “Cathelicidin (ll37) and human b2-defensin levels of children with post-infectious bronchiolitis obiterans”, Clin Respir J, 2015, doi: 10.1111/crj.12331.