2018, Number 4
Next >>
Rev Mex Oftalmol 2018; 92 (4)
Corneal epitheliopathy under diagnosed: Toxic, nutricional and diabetic epitheliopathy
Ramírez-Miranda A, Blas-Medina R
Language: Spanish
References: 37
Page: 173-179
PDF size: 420.95 Kb.
ABSTRACT
There are many causes of corneal epitheliopathies, however, the rare causes are underdiagnosed due to the little knowledge
that exists about them. Among these the most frequent is undoubtedly the toxic epitheliopathy, due to the misuse or treatment
of some topical medication, exerting its toxic effects directly to cause a superficial punctate keratopathy, or indirectly causing
inflammation and interfering with the migration of the epithelial limbal cells. There is a wide range of agents that can cause
toxic epitheliopathy, the most known benzalkonium chloride (BAK), highly toxic to the corneal epithelium, strongly associated
with toxic epitheliopathy, allergic conjunctivitis and blepharitis. There have been described toxic epithelopathies secondary
to chemotherapy specifically with monoclonal antibodies that inhibit the epidermal growth factor receptor (EGFR). The epitheliopathy
secondary to vitamin A deficiency is a very important clinical aspect in this pathology, causing an instability of the precorneal tear layer causing a punctate epitheliopathy, which can progress to epithelial defects, stromal edema and
keratinization. Diabetes mellitus can lead to several ocular complications, among which is the diabetic epitheliopathy that
includes superficial punctate keratopathy and persistent epithelial defects, having an important clinical impact due to the
symptoms produced from foreign body sensation to visual impairment. It is important to know this entities for its proper
diagnosis and treatment. Search intentionally in ophthalmological practice in cases of persistent epitheliopathies or treatment
resistant.
REFERENCES
Edelhauser HF, Ubels J. The cornea and the sclera. En: Kaufman PL, Alm A, eds. Adler’s Physiology of the Eye. 10.a ed. St. Louis, MO: Mosby; 2003. p. 47-114.
Grant WM. Toxicology of the Eye. Springfield, IL: Charles C Thomas; 1986.
Chen W, Li Z, Hu J, Zhang Z, Chen L, Chen Y, Liu Z. Corneal alternations induced by topical application of benzalkonium chloride in rabbit. PLoS One. 2011;6(10):e26103.
Chen HT, Chen KH, Hsu WM. Hsu Toxic keratopathy associated with abuse of low-dose anesthetic: a case report. Cornea. 2004;23(5):527-9.
Burstein NL. Corneal toxicity of topically applied drugs, vehicles and preservatives. Surv Ophthalmol. 1980;25(1):15-30.
De Saint Jean M, Brignole F, Bringuier AF, Bauchet A, Feldmann G, Baudouin C. Effects of benzalkonium chloride on grows and survival of Chang conjunctival cells. Invest Ophthalmol Vis Sci. 1999;40(3):619-30.
Vignesh AP, Srinivasan R, Karanth S. A case report of severe corneal toxicity following 0.5% topical moxifloxacin use Case Rep. Ophthalmol. 2015;6(1):63-5.
Mian SI, Gupta A, Pineda R 2nd. Corneal ulceration and perforation with ketorolac tromethamine (Aculr R) use after PRK. Cornea. 2006;25(2):232-4.
Kim YJ, Payal AR, Daly MK. Effects of tear gases on the eye. Surv Ophthalmol. 2016;61(4):434-42.
Spector J, Fernandez WG. Chemical, thermal, and biological ocular exposures. Emerg Med Clin North Am. 2008;26(1):125-36, vii.
Goldman DR, Seefeld AW. Ocular toxicity associated with indirect exposure to African spitting cobra venom. Wilderness Environ Med. 2010;21(2): 134-6.
Saint-Jean A, Sainz de la Maza M, Morral M, Torras J, Quintana R, Molina JJ, et al. Ocular adverse events of systemic inhibitors of the epidermal growth factor receptor: report of 5 cases. Ophthalmology. 2012;119(9):1798-802.
Graue-Hernández EO, Navas A, Ramírez-Miranda A. Toxic keratoconjunctivitis. En: Holland EJ, Mannis MJ, Lee WB, eds. Ocular surface disease: cornea, conjunctiva and tear film. Atlanta: Elsevier; 2013. p. 189-93.
Dart J. Corneal toxicity: the epithelium and stroma in iatrogenic and factitious disease. Eye (Lond). 2003;17(8):886-92.
Patel S, Dhakhwa K, Rai SKC, Bhattarai B, A Pandey, BP Bandhu. Clinical profile of toxic keratoconjunctivitis after ocular trauma with insect. Nep JOL. 2013;1(4):41-4.
Wilson FM 2nd. Adverse external ocular effects of topical ophthalmic therapy: an epidemiologic, laboratory, and clinical study. Trans Am Ophthalmol Soc 1983;81:854-965.
Tok OY, Tok L, Atay IM, Argun TC, Demirci N, Gunes A. Toxic keratopathy associated with abuse of topical anesthetics and amniotic membrane transplantation for treatment. Int J Ophthalmol. 2015;8(5):938-44.
Barbaro V, Ferrari S, Fasolo A, Pedrotti E, Marchini G, Sbabo A, et al. Evaluation of ocular surface disorders: a new diagnostic tool based on impression cytology and confocal laser scanning microscopy. Br J Ophthalmol. 2010;94(7):926-32.
Reilly CD, Mannis MJ. Toxic conjunctivitis. En: Krachmer JH, Mannis MJ, Holland EJ, eds. Cornea – Fundamentals, Diagnosis and Management. St. Louis: Mosby; 2011. p. 613-21.
Altinok AA, Balikoglu M, Sen E, Serdar K. Nonpreserved amniotic membrane transplantation for bilateral toxic keratopathy caused by topical anesthetic abuse: a case report. J Med Case Reports. 2010;4:262.
Steinkuller PG, Du L, Gilbert C, Foster A, Collins ML, Coats DK. Childhood blindness. J AAPOS. 1999;3(1):26-32.
Smith J, Steinemann TL. Vitamin A deficiency and the eye. Int Ophthalmol Clin. 2000;40(4):83-91.
Ehrlich HP, Tarver H, Hunt TK. Effects of vitamin A and glucocorticoids upon inflammation and collagen synthesis. Ann Surg. 1973;177(2):222-7.
Herbort CP, Weissman SS, Ostler HB, Cevallos A, Char DH. Ocular surface keratinization as a predictor of response to topical retinoic acid therapy. Arch Ophthalmol. 1989;107:1275-6.
Sommer A. Effects of vitamin A deficiency on the ocular surface. Ophthalmology. 1983;90(6):592-600.
Chander A, Chopra R, Batra N. Vitamin A deficiency: an eye sore. J Med Nutr Nutraceut. 2013;2:41.
Asselineau D, Bernard BA, Bailly C, Darmon M. Retinoic acid improves epidermal morphogenesis. Dev Biol. 1989;133(2):322-35.
Herbort CP, Zografos L, Zwingli M, Schoeneich M. Topical retinoic acid in dysplastic and metaplastic keratinization of corneoconjunctival epithelium. Graefes Arch Clin Exp Ophthalmol. 1988;226(1):22-6.
Kruse FE, Tseng SC. Retinoic acid regulates clonal growth and differentiation of cultured limbal and peripheral corneal epithelium. Invest Ophthalmol Vis Sci. 1994;35(5):2405-20.
Zouboulis CC. Isotretinoin revisited: pluripotent effects on human sebaceous gland cells. J Invest Dermatol. 2006;126(10):2154-6.
Saini JS, Khandalavla B. Corneal epithelial fragility in diabetes mellitus. Can J Ophthalmol. 1995;30(3):142-6.
Inoue K, Kato S, Ohara C, Numaga J, Amano S, Oshika T. Ocular and systemic factors relevant to diabetic keratoepitheliopathy. Cornea. 2001;20(8):798-801.
McNamara NA, Brand RJ, Polse KA, Bourne WM. Corneal function during normal and high serum glucose levels in diabetes. Invest Ophthalmol Vis Sci. 1998;39(1):3-17.
Hyndiuk RA, Kazarian EL, Schultz Rom Seideman S. Neurotrophic corneal ulcers in diabetes mellitus. Arch. Ophthalmol. 1977;95(12):2193-6.
Inoue K, Kato S, Inoue Y, Amano S, Oshika T. The corneal endothelium and thickness in type II diabetes mellitus. Jpn J Ophthalmol. 2002;46(1): 65-9.
Kaji Y. Prevention of diabetic keratopathy. Br J Ophthalmol. 2005;89(3): 254-5.
Abdelkader H, Patel DV, McGhee CNj, Alany RG. New therapeutic approaches in the treatment of diabetic keratopathy: a review. Clin Exp Ophthalmol. 2011;39(3):259-70.