2017, Number 5
<< Back Next >>
Rev Med Inst Mex Seguro Soc 2017; 55 (5)
Bayesian tragedy, from clinical iatrogenesis to biotechnology
Lamothe M, Lamothe N, Lamothe D, Lamothe PA
Language: Spanish
References: 28
Page: 641-653
PDF size: 266.53 Kb.
ABSTRACT
Diagnostic algorithms, as well as the biotechnological design,
require the calculation of conditional probability, given the presence
of certain positive data, in the context of prevalence,
sensitivity and specificity; It is necessary to estimate the probability
that the patient has a certain disease. Sometimes, with
a test of scrutiny, it goes from a probability of 1/1000 to 1/20,
constituting a great diagnostic advance, reducing the uncertainty
spectacularly; However, the tragedy is that most doctors believe
that the probability changed from 0.1% (1/1000) to more than
90%, which is outrageously wrong. Iatrogeny arises from the
error in answering the question: “given that the test is positive,
what is the probability that the patient has the disease?” In other
cases, tragedy is to apply a test to an individual belonging to a
subpopulation for which it was not designed. In addition, it is evident
that the fascination for the sensitivity avoids the application
of less sensitive methods in populations that are abandoned; It
is not a matter of making better tests than those that the State
does to the patients it attends, but of making less accurate tests
for the patients that the State does not attend.
REFERENCES
Kasper DL, Fauci AS, Hause SL, Longo DL, Jameson JL, Loscalzo J. The Practice of Medicine en: Kasper DL, Fauci AS, Hauser SL, Longo DL, Jameson JL, Loscalzo J. Harrison’s Principles of Internal Medicine. 19a Ed. USA: McGraw-Hill Education; 2015.
Yudkowsky E. An intuitive explanation of Bayes’ Theorem. USA; Machine Intelligence Research Institute: 2017. Disponible en: http://www.yudkowsky. net/rational/bayes/
Feynman R. The Character of Physical Law. USA: The MIT Press; 1965.
Larroyo F. La Lógica de las Ciencias. 18ª ed. México: Editorial Porrúa; 1973.
Larroyo F. Filosofía de las Matemáticas. México: Editorial Porrúa. 1976.
Aleksandrov AD, Kolmogorov AN, Lavrent’ev MA. Mathematics: Its Content, Methods and Meaning. USA: Dover Publications, Inc; 1969.
Wittgenstein L. Observaciones Sobre los Fundamentos de la Matemática. España: Alianza Editorial; 1978.
Lifshitz A. La Ética en las Publicaciones Médicas. Revista Médica del Instituto del Seguro Social. 2013;51(6):604-5.
Larroyo F. Estudio Preliminar en Platón Diálogos. México: Editorial Porrúa. Colección Sepan Cuantos; 1996.
Casscells W, Schoenberger A, Graboys T. Interpretation by physicians of clinical laboratory results. N Engl J Med. 1978;299:999-1001.
Teorema de Bayes https://www.youtube.com/ watch?v=k7dpJY6xtCk
eorema de Bayes Problema 1. Estadística. https:// www.youtube.com/watch?v=snWkK1p2AWQ
Teorema de Bayes Problema 2. Estadística. https:// www.youtube.com/watch?v=IOcw4UykZdI
Teorema de Bayes. Problema 3. Estadística. https:// www.youtube.com/watch?v=KsVkG1d2M_g
Papadakis MA, McPhee S. Current Medical Diagnose & Treatment. 55a Ed. USA: McGraw-Hill Education; 2016.
Popper K. The logic of scientific discovery. Great Britain: Routledge; 2002.
Mark DB, Wong JB. Decision-making in clinical medicine en: Kasper DL, Fauci AS, Hauser SL, Longo DL, Jameson JL y Loscalzo J. Harrison’s Principles of Internal Medicine. 19a Ed. USA: McGraw-Hill Education; 2015.
Alexánderson E, Sierra C, Lamothe PA, Gated- Pet en Alexánderson E. y Meave A. Imagen Cardiovascular. México: Facultad de Medicina Universidad Nacional Autónoma de México; 2008.
Constitución Política de los Estados Unidos Mexicanos (texto vigente al 28 de junio de 2016) http://info4.juridicas.unam.mx/ijure/fed/9/
Lamothe P, Baril B, Chi A, Lee L, Baril E. Accessory proteins for DNA polymerase alpha activity with single-strand DNA templates. Proc Natl Acad Sci. 1981;78(8):4723-7.
Lamothe P. Implicaciones Sociopoliticoeconómicas de la Ingeniería Genética. Anales Españoles de Pediatría. 1992;36(48):55-8.
Lamothe PJ. Epistemocracia: Primer tratado general de ingeniería política. 2a Ed. México: Edamex; 1998.
Jeffrey R. C. Subjective probability: the real thing. New York, USA: Cambridge University Press; 2004.
Jaynes ET. Probability theory: the logic of science. Cambridge, United Kingdom: The Press Syndicate of the University of Cambridge; 2003.
Organización Mundial de la Salud. Constitución de la OMS: Principios. Génova, Suiza. OMS; 1946. Disponible en: http://www.who.int/about/mission/es/
Laplace PS. A Philosophical Essay on Probabilities. USA: Rough Draft; 2009.
Pfeiffer PE. Concepts of Probability Theory. USA: Dover Publications, Inc.; 1978.
Stone JV. Bayes’ rule: a tutorial introduction to Bayesian analysis. USA: Sebtel Press; 2013.