2018, Number S1
Innate immune memory, the missing piece of the immunological response
Language: English
References: 60
Page: 112-123
PDF size: 538.73 Kb.
ABSTRACT
In the last decade, growing evidence has shed some light into an unrecognized capacity of the innate immune compartment: the unexpected ability of innate cells to enhance its response upon an immunological re-challenge. This capacity is called Trained immunity and resembles adaptive immune memory but lacks the specificity of antigen recognition by lymphocytes. Mechanistically, this type of memory or trained immunity, unlike somatic recombination or hypermutation of antigen-specific receptors in the adaptive memory; depends on pattern recognition receptors and metabolic changes that lead to long-term modifications on the epigenetic landscape, poising chromatin to readily express inflammatory cytokines upon a pathogenic re-challenge. In this review we will summarize and discuss the current progress made at elucidating the different innate cell populations with memory-like features, their receptors, downstream molecules and effector cytokines involved in the development and maintenance of trained immunity. This novel evidence overrides a very important dogma in immunology dissolving the boundaries separating innate and adaptive compartments of the immune system, and sets immunological memory as a shared mechanism of all immune cell types able to provide long-term protection to the host.REFERENCES
Abt, M.C., Osborne, L.C., Monticelli, L.A., Doering, T.A., Sonnenberg, G.F., Paley, M.A., Antenus, M., Katie, L., Erikson, J., Wherry, E.J., & Artis, D. (2012). Commensal Bacteria Calibrate the Activation Threshold of Innate Antiviral Immunity. Immunity, 37(1), 158–170. https://doi.org/10.1016/j.immuni.2012.04.011.Abt
Arts, R.J.W., Carvalho, A., La Rocca, C., Palma, C., Rodrigues, F., Silvestre, R., Kleinnijenhuis, J., Lachmandas, E., Gonçalves, L.G., Belinha, A., Cunha, C., Oosting, M., Joosten, L.A.B., Matarese, G., van Crevel, R., & Netea, M.G. (2016). Immunometabolic Pathways in BCG-Induced Trained Immunity. Cell Reports, 17(10), 2562–2571. https://doi. org/10.1016/j.celrep.2016.11.011
Arts, R.J.W., Moorlag, S.J.C.F.M., Novakovic, B., Li, Y., Wang, S.-Y., Oosting, M., Kumar, V., Xavier, R.J., Wijmenga, C., Joosten, L.A.B., Reusken, C.B.E.M., Benn, C.S., Aaby, P., Koopmans, M.P., Stunnenberg, H.G., van Crevel, R., & Netea, M.G. (2018). BCG Vaccination Protects against Experimental Viral Infection in Humans through the Induction of Cytokines Associated with Trained Immunity. Cell Host & Microbe, 23(1), 89–100.e5. https://doi.org/10.1016/j.chom.2017.12.010
Arya, R., & Bassing, C.H. (2017). V(D)J Recombination Exploits DNA Damage Responses to Promote Immunity. Trends in Genetics, 33(7), 479–489. https://doi.org/10.1016/j.tig.2017.04.006 Barrangou, R., & Marraffini, L.A. (2014). CRISPR-cas systems: Prokaryotes upgrade to adaptive immunity. Molecular Cell. https://doi.org/10.1016/j.molcel.2014.03.011
Bekkering, S., Arts, R.J.W., Novakovic, B., Kourtzelis, I., van der Heijden, C.D.C.C., Li, Y., Popa, C.D., ter Horst, R., van Tuijl, J., Netea-Maier, R.T., van de Veerdonk, F.L., Chavakis, T., Joosten, L.A.B., van der Meer, J.W.M., Stunnenberg, H., Riksen, N.P., & Netea, M.G. (2018). Metabolic Induction of Trained Immunity through the Mevalonate Pathway. Cell, 172(1–2), 135–146. e9. https://doi.org/10.1016/j.cell.2017.11.025
Bistoni, F., Verducci, G., Perito, S., Vecchiarelli, A., Puccetti, P., Marconi, P., & Cassone, A. (1988). Immunomodulation by a low-virulence, agerminative variant of Candida albicans. Further evidence for macrophage activation as one of the effector mechanisms of nonspecific anti-infectious protection. Medical Mycology, 26(5), 285–299. https://doi. org/10.1080/02681218880000401
Bouchery, T., Kyle, R., Camberis, M., Shepherd, A., Filbey, K., Smith, A., Harvie, M., Painter, G., Johnston, K., Ferguson, P., Jain, R., Roediger, B., Delahunt, B., Weninger, W., Forbes-Blom, E., & Le Gros, G. (2015). ILC2s and T cells cooperate to ensure maintenance of M2 macrophages for lung immunity against hookworms. Nature Communications, 6, 1–13. https://doi. org/10.1038/ncomms7970
Chen, F., Wu, W., Millman, A., Craft, J.F., Chen, E., Patel, N., Boucher, J.L., Urban, J.F., Kim, C.C., & Gause, W.C. (2014). Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion. Nature Immunology, 15(10), 938–946. https://doi.org/10.1038/ni.2984
Christ, A., Günther, P., Lauterbach, M.A.R., Duewell, P., Biswas, D., Pelka, K., Scholz, C.J., Oosting, M., Haendler, K., Baßler, K., Klee, K., Schulte-Schrepping, J., Ulas, T., Moorlag, S.J.C.F.M., Kumar, V., Park, M.H., Joosten, L.A.B., Groh, L.A., Riksen, N.P., Espevik, T., Schlitzer, A., Li, Y., Fitzgerald, M.L., Netea, M.G., Schultze, J.L., & Latz, E. (2018). Western Diet Triggers NLRP3-Dependent Innate Immune Reprogramming. Cell, 172(1–2), 162–175.e14. https://doi.org/10.1016/j. cell.2017.12.013
Fleming, B.D., & Mosser, D.M. (2011). Regulatory macrophages: Setting the threshold for therapy. European Journal of Immunology. https://doi.org/10.1002/eji.201141717 Ganal, S.C., Sanos, S.L., Kallfass, C., Oberle, K., Johner, C., Kirschning, C., Lienenklaus, S., Weiss, S., Staeheli, P., Aichele, P., & Diefenbach, A. (2012). Priming of Natural Killer Cells by Nonmucosal Mononuclear Phagocytes Requires Instructive Signals from Commensal Microbiota. Immunity, 37(1), 171–186. https://doi.org/10.1016/j.immuni.2012.05.020
Kaufmann, E., Sanz, J., Dunn, J.L., Khan, N., Mendonça, L.E., Pacis, A., Tzelepis, F., Pernet, E., Dumaine, A., Grenier, J.-C., Mailhot-Léonard, F., Ahmed, E., Belle, J., Besla, R., Mazer, B., King, I.L., Nijnik, A., Robbins, C.S., Barreiro, L.B., & Divangahi, M. (2018). BCG Educates Hematopoietic Stem Cells to Generate Protective Innate Immunity against Tuberculosis. Cell, 172(1–2), 176–190.e19. https://doi. org/10.1016/j.cell.2017.12.031
Kawabe, T., Jankovic, D., Kawabe, S., Huang, Y., Lee, P.-H., Yamane, H., Zhu, J., Sher, A., Germain, R.N., & Paul, W.E. (2017). Memory-phenotype CD4+ T cells spontaneously generated under steady-state conditions exert innate TH1-like effector function. Science Immunology, 2(12). https://doi.org/10.1126/ sciimmunol.aam9304
Kleinnijenhuis, J., Quintin, J., Preijers, F., Joosten, L.A.B., Ifrim, D.C., Saeed, S., Jacobs, C., van Loenhout, J., de Jong, D., Stunnenberg, H.G., Xavier, R.J., van der Meer, J.W.M., van Crevel, R., & Netea, M.G. (2012). Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proceedings of the National Academy of Sciences, 109(43), 17537–17542. https://doi.org/10.1073/pnas.1202870109
Mitroulis, I., Ruppova, K., Wang, B., Chen, L.-S., Grzybek, M., Grinenko, T., Eugster, A., Troullinaki, M., Palladini, A., Kourtzelis, I., Chatzigeorgiou, A., Schlitzer, A., Beyer, M., Joosten, L.A.B., Isermann, B., Lesche, M., Petzold, A., Simons, K., Henry, I., Dahl, A., Schultze, J.L., Wielockx, B., Zamboni, N., Mirtschink, P., Coskun, Ü., Hajishengallis, G., Netea, M.G., & Chavakis, T. (2018). Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity. Cell, 172(1–2), 147–161.e12. https://doi.org/10.1016/j.cell.2017.11.034
Nabekura, T., Kanaya, M., Shibuya, A., Fu, G., Gascoigne, N.R.J., & Lanier, L.L. (2014). Costimulatory Molecule DNAM-1 Is Essential for Optimal Differentiation of Memory Natural Killer Cells during Mouse Cytomegalovirus Infection. Immunity, 40(2), 225–234. https://doi.org/10.1016/j.immuni.2013.12.011
Netea, M.G., Quintin, J., & Van Der Meer, J.W.M. (2011). Trained immunity: A memory for innate host defense. Cell Host and Microbe, 9(5), 355–361. https://doi.org/10.1016/j. chom.2011.04.006 O’Sullivan, T.E., & Sun, J.C. (2015). Generation of Natural Killer Cell Memory during Viral Infection. Journal of Innate Immunity, 7(6), 557–562. https://doi.org/10.1159/000375494
Paust, S., Gill, H.S., Wang, B.Z., Flynn, M.P., Moseman, E.A., Senman, B., Szczepanik, M., Telenti, A., Askenase, P.W., Compans, R.W., & Von Andrian, U.H. (2010). Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigenspecific memory of haptens and viruses. Nature Immunology, 11(12), 1127–1135. https://doi.org/10.1038/ni.1953
Quintin, J., Saeed, S., Martens, J.H.A., Giamarellos-Bourboulis, E.J., Ifrim, D.C., Logie, C., Jacobs, L., Jansen, T., Kullberg, B.J., Wijmenga, C., Joosten, L.A.B., Xavier, R.J., Van Der Meer, J.W.M., Stunnenberg, H.G., & Netea, M.G. (2012). Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host and Microbe, 12(2), 223–232. https://doi.org/10.1016/j. chom.2012.06.006
Rossato, M., Curtale, G., Tamassia, N., Castellucci, M., Mori, L., Gasperini, S., Mariotti, B., De Luca, M., Mirolo, M., Cassatella, M.A., Locati, M., & Bazzoni, F. (2012). IL-10-induced microRNA-187 negatively regulates TNF- , IL-6, and IL-12p40 production in TLR4-stimulated monocytes. Proceedings of the National Academy of Sciences, 109(45), E3101–E3110. https://doi.org/10.1073/pnas.1209100109
Spits, H., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J.P., Eberl, G., Koyasu, S., Locksley, R.M., McKenzie, A.N.J., Mebius, R.E., Powrie, F., & Vivier, E. (2013). Innate lymphoid cells-a proposal for uniform nomenclature. Nature Reviews Immunology, 13(2), 145–149. https://doi.org/10.1038/nri3365
Wendeln, A., Degenhardt, K., Kaurani, L., Gertig, M., Ulas, T., Jain, G., Wagner, J., Häsler, L.M., Wild, K., Skodras, A., Blank, T., Staszewski, O., Datta, M., Centeno, T.P., Capece, V., Islam, R., Kerimoglu, C., & Staufenbiel, M. (2018). Innate immune memory in the brain shapes neurological disease hallmarks. Nature. https://doi.org/10.1038/s41586-018-0023-4