2018, Número S1
Regulación de la traducción mediada por la proteína NSP3 de rotavirus
Idioma: Español
Referencias bibliográficas: 49
Paginas: 124-133
Archivo PDF: 775.76 Kb.
RESUMEN
El estudio de los mecanismos utilizados por diversos virus para controlar la traducción de la célula hospedera y favorecer la expresión de proteínas virales ha sido muy instructivo para conocer mecanismos celulares fundamentales que regulan la traducción. La proteína NSP3 de los rotavirus de la especie A (RVA) es capaz de inhibir la traducción de los RNAm celulares como consecuencia de su unión al factor de iniciación de la traducción eIF4G y de estimular la traducción de los RNAm virales como consecuencia de su unión a la secuencia UGACC de su extremo 3’. Se ha propuesto que NSP3 inhibe la traducción por interferir con la circularización de los extremos 5’-3’ de los RNAm celulares mediada por eIF4E-eIF4G-PABP (proteína de unión a poli-A), y simultáneamente se propone que NSP3 estimula la traducción de los RNAm del RVA circularizándolos de manera análoga a la que realiza PABP en los RNAm celulares. Sin embargo, la importancia de la dimerización de NSP3 asistida por la chaperona HSP90 en su función inhibitoria de la traducción celular se desconoce. Recientemente, se exploró la importancia de los intermediarios de la dimerización de NSP3 sobre su función inhibitoria de la traducción, y se encontró que mutaciones puntuales en la región coiled-coil afectan la formación de los dímeros y conservan parcialmente su función inhibitoria de la traducción celular. Además, se detectó que los dímeros de NSP3 se degradan con mayor rapidez que los intermediarios de la dimerización. Estos datos demuestran que la función de NSP3 se adquiere previamente a la aparición de los dímeros, y sugiere que la susceptibilidad al proteasoma de las distintas formas oligoméricas de NSP3 son relevantes en el establecimiento de la función inhibitoria de la traducción celular.REFERENCIAS (EN ESTE ARTÍCULO)
Contreras-Treviño, H.I., Reyna-Rosas, E., León-Rodríguez, R., Ruiz- Ordaz, B.H., Dinkova, T.D., Cevallos, A.M. & Padilla-Noriega, L. (2017). Species A rotavirus NSP3 acquires its translation inhibitory function prior to stable dimer formation. PLoS One, 12(7), 1–18. https://doi.org/10.1371/journal.pone.0181871
Dutta, D., Chattopadhyay, S., Bagchi, P., Halder, U.C., Nandi, S., Mukherjee, A., Kobayashi, N., Taniguchi, K. & Chawla-Sarkar, M. (2011). Active participation of cellular chaperone Hsp90 in regulating the function of rotavirus nonstructural protein 3 (NSP3). J. Biol. Chem., 286(22), 20065–20077. https://doi. org/10.1074/jbc.M111.231878
Harb, M., Becker, M.M., Vitour, D., Baron, C.H., Vende, P., Brown, S.C., Bolte, S., Arold, S.T. & Poncet, D. (2008). Nuclear localization of cytoplasmic poly(A)-binding protein upon rotavirus infection involves the interaction of NSP3 with eIF4G and RoXaN. J. Virol., 82(22), 11283–11293. https:// doi.org/10.1128/JVI.00872-08
Iwasaki, S., Ingolia, N.T., Morisaki, T., Wu, B., Eliscovich, C., Yoon, Y.J., Singer, R.H., Yan, X., Hoek, T.A., Vale, R.D., Tanenbaum, M.E., Wang, C., Han, B., Zhou, R., Zhuang, X., Ingolia, N.T., Lareau, L.F., Weissman, J.S., Shah, P., Ding, Y., Niemczyk, M., Kudla, G., Plotkin, J.B., Mukherjee, C., Jackson, R.J., Hellen, C.U., Pestova, T. V., Jung, H., Gkogkas, C.G., Sonenberg, N., Holt, C.E. & Shieh, Y.W. (2016). Seeing translation. Science, (80-) 352(6292), 1425–1429. https://doi.org/10.1126/science.aag1039
Keryer-Bibens, C., Legagneux, V., Namanda-Vanderbeken, A., Cosson, B., Paillard, L., Poncet, D. & Osborne, H.B. (2009). The rotaviral NSP3 protein stimulates translation of polyadenylated target mRNAs independently of its RNA-binding domain. Biochem. Biophys. Res. Commun., 390(2), 302–306. https:// doi.org/10.1016/j.bbrc.2009.09.115
Matthijnssens, J., Ciarlet, M., McDonald, S.M., Attoui, H., Bányai, K., Brister, J.R., Buesa, J., Esona, M.D., Estes, M.K., Gentsch, J.R., Iturriza-Gómara, M., Johne, R., Kirkwood, C.D., Martella, V., Mertens, P.P.C., Nakagomi, O., Parreño, V., Rahman, M., Ruggeri, F.M., Saif, L.J., Santos, N., Steyer, A., Taniguchi, K., Patton, J.T., Desselberger, U. & Van Ranst, M. (2011). Uniformity of rotavirus strain nomenclature proposed by the rotavirus Classification Working Group (RCWG). Arch. Virol., 156(8), 1397–1413. https://doi.org/10.1007/s00705- 011-1006-z
Matthijnssens, J., Ciarlet, M., Rahman, M., Attoui, H., Bányai, K., Estes, M.K., Gentsch, J.R., Iturriza-Gómara, M., Kirkwood, C.D., Martella, V., Mertens, P.P.C., Nakagomi, O., Patton, J.T., Ruggeri, F.M., Saif, L.J., Santos, N., Steyer, A., Taniguchi, K., Desselberger, U. & Van Ranst, M. (2008). Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch. Virol., 153(8), 1621–1629. https://doi. org/10.1007/s00705-008-0155-1
Vende, P., Piron, M., Castagné, N. & Poncet, D. (2000). Efficient Translation of rotavirus mRNA Requires Simultaneous Interaction of NSP3 with the Eukaryotic Translation Initiation Factor eIF4G and the mRNA 3 ′ End. J. Virol., 74(15), 7064– 7071. https://doi.org/10.1128/JVI.74.15.7064-7071.2000. Updated 44. Vicens, Q. & Westhof, E. (2014). Biogenesis of Circular RNAs. Cell, 159(1), 13–14. https://doi.org/10.1016/j.cell.2014.09.005
Vitour, D., Lindenbaum, P., Vende, P., Becker, M., Poncet, D. & Becker, M.M. (2004). RoXaN, a Novel Cellular Protein Containing TPR, LD, and Zinc Finger Motifs, Forms a Ternary Complex with Eukaryotic Initiation Factor 4G and rotavirus NSP3 RoXaN, a Novel Cellular Protein Containing TPR, LD, and Zinc Finger Motifs, Forms a Ternary. J. Virol., 78(8), 3851–3862. https://doi.org/10.1128/JVI.78.8.3851
Walsh, D., Mathews, M.B., Mohr, I., Larsson, O., Tian, B., Sonenberg, N., Hershey, J.W.B., Roux, P.P., Topisirovic, I., Darnell, J.C., Richter, J.D., Pavitt, G.D., Ron, D., Cells, V., Decker, C.J. & Parker, R. (2012). Tinkering with Translation: Protein Synthesis in Virus-Infected Cells. Cold Spring Harb. Perspect. Biol., 5(1), 1–28. https://doi.org/10.1101/cshperspect.a012351