2018, Number S1
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2018; 21 (S1)
Identification and analysis of ars genes in strains of Bacillus hyper tolerant to arsenic, isolated from thermal pools in Araró, Mexico
Prieto-Barajas CM, Elorza-Gómez JC, Loeza-Lara PD, Sánchez-Yáñez JM, Valencia-Cantero E, Santoyo G
Language: Spanish
References: 22
Page: 22-29
PDF size: 857.88 Kb.
ABSTRACT
In this work we investigated the presence, diversity and phylogenetic relationships of genes that confer resistance
to arsenic (As) in 37 strains of the genus
Bacillus, isolated from microbial mats in hot springs from Araró, Michoacán,
Mexico. Specific oligonucleotides were designed for PCR amplification of the genes
arsB (arsenite-specific efflux
pump) and
arsC (arsenite reductase),
ACR3 (arsenite transporter) and
aoxB (arsenite oxidase) of the genus
Bacillus,
detecting only the genes
arsB and
arsC in 21 out of the 37 analyzed strains (56.7% of the total). The Blastx-type analysis
showed a high identity (84-100%) with arsenite efflux pumps (ArsB) and arsenate reductase proteins (ArsC) of various
strains of the genera
Bacillus, Paenibacillus, Psychrobacter and
Planococcus. Such analyzes were confirmed through
the construction of phylogenies of the
arsB and
arsC sequences. The detection of the
arsB and
arsC genes in
Bacillus
strains was correlated with As hyperresistance values, which corresponded up to 32 and 128 mM of arsenite (III)
and arsenate (V), respectively. Finally, the
arsB and
arsC genes identified in
Bacillus strains could be a mechanism
of resistance to As in an extreme aquatic environment, such as in Araro’s hot springs.
REFERENCES
Alí, H., Khan, E., & Sajad, M.N. (2013). Phytorremediation of heavy metals-Concepts and applications. Chemosphere, 91(7), 869- 881. Doi: 10.1016/j.chemosphere.2013.01.075.
Bachate, S. P., Cavalca, L., & Andreoni, V. (2009). Arsenic-resistant bacteria isolated from agricultural soils of Bangladesh and characterization of arsenate-reducing strains. Journal of applied microbiology, 107(1), 145-156. Doi: 10.1111/j.1365- 2672.2009.04188.x.
Cai, L., Liu, G., Rensing, C., & Wang, G. (2009). Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BMC Microbiology, 9, 1471-1480. Doi: 10.1186/1471-2180-9-4.
Cavalca, L., Zanchi, R., Corsini, A., Colombo, M., Romagnoli, C., Canzi, E., & Andreoni, V. (2010). Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics. Systematic and Applied Microbiology, 33(3), 154-164. Doi: 10.1016/j. syapm.2010.02.004.
Cervantes, C., & Gamiño, N.S. (2017). Diversidad de genes de resistencia a arsénico en procariotas. Ciencia Nicolaita, 70, 80-93.
Israde-Alcántara, I., & Garduño-Monroy, V.H. (1999). Lacustrine record in a volcanic intra-arc setting: the evolution of the Late Neogene Cuitzeo basin system (central-western Mexico, Michoacan). Palaeogeography, Palaeoclimatology, Palaeoecology, 151(1-3), 209-227. Doi: 10.1016/S0031- 0182(99)00024-3.
Khan, M.L., & Ho, Y-S. (2011). Arsenic in drinking water: a review on toxicological effects, mechanism of accumulation and remediation. Asian Journal of Chemistry, 23(5),1889-1901. doi:10.1155/2014/304524.
Liu, S., Zhang, F., Chen, J., & Sun, G. (2011). Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. Journal of Environmental Sciences, 23(9), 1544-1550. Doi: 10.1016/ S1001-0742(10)60570-0.
Mahuku, G.S. (2004). A simple extraction method suitable for PCRbased analysis of plant, fungal and bacterial DNA. Plant Molecular Biology Reporter, 22, 71-81. Doi: 10.1007/ BF02773351.
Mandal, B.K., & Suzuki, K.T. (2002). Arsenic round the world: a review. Talanta, 58(1), 201–235. Doi:10.1016/S0039- 9140(02)00268-0.
Nordstrom, D.K. (2002). Worldwide occurrences of arsenic in ground water. Science, 296(5576), 2143-2145. Doi: 10.1126/ science.1072375.
Oremland, R.S., & Stolz, J.F. (2003) The ecology of arsenic. Science, 300, 939–944. Doi: 10.1126/science.1081903.
Paez-Espino, D., Tamames, J., de Lorenzo, V., & Cánovas, D. (2009). Microbial responses to environmental arsenic. Biometals, 22(1),117-130. Doi: 10.1007/s10534-008-9195-y.
Prieto-Barajas, C.M., Alfaro-Cuevas, R., Valencia-Cantero, E. & Santoyo, G. (2017). Effect of seasonality and physicochemical parameters on bacterial communities in two hot spring microbial mats from Araró, México. Revista Mexicana de Biodiversidad, 88, 616-624. Doi: 10.1016/j.rmb.2017.07.010.
Quéméneur, M., Heinrich-Salmeron, A., Muller, D., Lièvremont, D., Jauzein, M., Bertin, P. N., Garrido, F. & Joulian, C. (2008). Diversity surveys and evolutionary relationships of aoxB genes in aerobic arsenite-oxidizing bacteria. Applied and environmental microbiology, 74(14), 4567-4573. Doi: 10.1128/AEM.02851-07.
Rosen, P. (1971). Theoretical significance of arsenic as a carcinogen. Journal of theoretical biology, 32, 425–426. Doi:10.1016/0022- 5193(71)90178-0.
Rosen, B.P. & Z. Liu (2009). Transport pathways for arsenic and selenium: a minireview. Environmental International, 35, 512-515. Doi: 10.1016/j.envint.2008.07.023.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28, 2731-2739. Doi: 10.1093/molbev/msr121.
Tripti, K., Sayantan, D., Shardendu, S., Singh, D. N., & Tripathi, A. K. (2014). Potential for the Uptake and Removal of Arsenic [As (V) and As (III)] and the Reduction of As (V) to As (III) by Bacillus licheniformis (DAS1) under Different Stresses. Korean Journal of Microbiology and Biotechnology, 42(3), 238-248. Doi: 10.4014/kjmb.1401.01004.
Vázquez-Vázquez, M.J., Cortés-Martínez, R. & Alfaro-Cuevas- Villanueva, R. (2015). Arsenic occurrence and water quality in recreational thermal springs at Araró, Mexico. International Journal of Science and Technology, 5(1),1-5.
Yang, H-C. & Rosen, B.P. (2016). New mechanism of bacterial arsenic resistance. Biomedical Journal, 39(1), 5-13. Doi: 10.1016/j. bj.2015.08.003
Yang, Y., & Zhang, R. (2017). Draft Genome Sequence of Bacillus sp. Strain CDB3, an Arsenic-Resistant Soil Bacterium Isolated from Cattle Dip Sites. Genome announcements, 5(25), e00429- 17. Doi: 10.1128/genomeA.00429-17.