2018, Número S1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2018; 21 (S1)
Evaluación de la capacidad de inhibición de hemólisis oxidativa y actividad antimicrobiana de fracciones peptídicas obtenidas de la hidrólisis de proteínas de huevo, leche y soya usando proteasas extraídas de Bromelia pinguin y Bromelia karatas
Aguilera-Aguirre S, Meza-Espinoza L, Hernández-Mendoza A, Vallejo-Córdoba B, González-Córdova AF, Montalvo-González E
Idioma: Español
Referencias bibliográficas: 34
Paginas: 13-21
Archivo PDF: 390.42 Kb.
RESUMEN
Los hidrolizados proteínicos son una fuente de péptidos bioactivos (PB) y estos compuestos pueden ejercer un papel
importante en la salud humana debido a sus diferentes acividades biológicas. El uso de proteasas de origen vegetal
es una alternativa potencial para producir PB. El objetivo de este trabajo fue evaluar la capacidad de inhibición
de la hemólisis oxidativa (IHO) y actividad antimicrobiana de hidrolizados y fracciones peptídicas obtenidas de la
hidrólisis de proteínas de huevo (ovoalbúmina), leche y soya, con proteasas extraídas de frutos de
Bromelia pinguin
y
Bromelia karatas. En general, todos los hidrolizados y fracciones peptídicas presentaron una alta IHO, siendo la
fracción peptídica de ≤1 kDa, obtenida de la hidrólisis de ovoalbúmina con proteasas de
B. karatas, la que presentó
mayor actividad (98.19%). En contraste, ninguno de los hidrolizados registró actividad antimicrobiana, mientras
que las fracciones peptídicas (≤5, ≤10 y ≤30 kDa), obtenidas de la hidrólisis de leche con proteasas de
B. pinguin,
mostraron la mayor actividad antimicrobina (22.26-23.79% de inhibición), contra
Listeria innocua. Los resultados
resaltan el potencial de las proteasas de
B. pinguin y
B. karatas para hidrolizar proteínas de diferentes alimentos y
generar hidrolizados y PB con alta actividad antioxidante.
REFERENCIAS (EN ESTE ARTÍCULO)
Abdel-Hamid, M., Otte, J., De Gobba, C., Osman, A. & Hamad, E. (2017). Angiotensin I-converting enzyme inhibitory activity and antioxidant capacity of bioactive peptides derived from enzymatic hydrolysis of buffalo milk proteins. Int. Dairy J., 66, 91-98. DOI: 10.1016/j.idairyj.2016.11.006.
Aguilar-Toalá, J. E., Santiago-López, L., Peres, C. M., Peres, C., García, H. S., Vallejo-Córdoba, B., González-Córdoba A.F. & Hernández-Mendoza, A. (2017). Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains. J. Dairy Sci., 100, 65-75. DOI: 10.3168/jds.2016-11846.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Brötz, H., Bierbaum, G., Leopold, K., Reynolds, P. E. & Sahl, H. G. (1998). The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob. Agents Chemother., 42, 154-160.
Cho, M. J., Unklesbay, N., Hsieh, F. H. & Clarke, A. D. (2004). Hydrophobicity of bitter peptides from soy protein hydrolysates. J. Agric. Food Chem., 52, 5895-5901. DOI: 10.1021/jf0495035.
Chopra, I. & Greenwood, D. (2001). Antibacterial Agents: Basis of Action. En: Battista, J. (Ed.), Encyclopedia of life sciences (pp. 1–8). Hoboken, New Jersey: Wiley, Ltd.
Dziuba, B. & Dziuba, M. (2014). New milk protein-derived peptides with potential antimicrobial activity: An approach based on bioinformatic studies. Int. J. Mol. Sci., 15, 14531-14545. DOI:10.3390/ijms150814531.
Eloff, J. N. (1998). A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med., 64, 711-713. DOI: 10.1055/s-2006-957563.
Ghosh, C. & Haldar, J. (2015). Membrane-active small molecules: designs inspired by antimicrobial peptides. Chem. Med. Chem., 10, 1606-1624. DOI: 10.1002/cmdc.201500299.
Headon, D.R. & Walsh, G. (1994). The industrial production of enzymes. Biotechnol. Adv., 12, 635-646. DOI: 10.1016/0734- 9750(94)90004-3.
Huang, J. F., Xu, Y. M., Hao, D. M., Huang, Y. B., Liu, Y. & Chen, Y. (2010). Structure-guided de novo design of α-helical antimicrobial peptide with enhanced specificity. Pure Appl. Chem., 82, 243-257. DOI: 10.1351/PAC-CON-09-01-12.
Kavanagh, K. & Dowd, S. (2004). Histatins: antimicrobial peptides with therapeutic potential. J. Pharm. Pharmacol., 56, 285-289. DOI: 10.1211/0022357022971.
Klompong, V., Benjakul, S., Kantachote, D., & Shahidi, F. (2007). Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem., 102, 1317–1327. DOI: 10.1016/j. foodchem.2006.07.016.
Kumar, D., Chatli, M. K., Singh, R., Mehta, N. & Kumar, P. (2016). Antioxidant and antimicrobial activity of camel milk casein hydrolysates and its fractions. Small Rumin. Res., 139, 20-25. DOI: 10.1016/j.smallrumres.2016.05.002.
Liu, J., Jin, Y., Lin, S., Jones, G. S. & Chen, F. (2015). Purification and identification of novel antioxidant peptides from egg white protein and their antioxidant activities. Food Chem., 175, 258- 266. DOI: 10.1016/j.foodchem.2014.11.142.
Maria-Neto, S., de Almeida, K. C., Macedo, M. L. R. & Franco, O. L. (2015). Understanding bacterial resistance to antimicrobial peptides: From the surface to deep inside. Biochim. Biophys. Acta., 1848, 3078-3088. DOI: 10.1016/j.bbamem.2015.02.017.
Meza-Espinoza, L., Vivar-Vera, M. A., García-Magaña, M.L., Sáyago- Ayerdi, S. G., Chacón-López, A., Becerra-Verdín, E. M. &
Montalvo-González, E. (2017). Enzyme activity and partial characterization of proteases obtained from Bromelia karatas fruit and compared with Bromelia pinguin proteases. Food Sci. Biotechnol. (In press) DOI: 10.1007/s10068-017-0244-6. Moreno-Hernández, J. M., Hernández-Mancillas, X. D., Navarrete, E. L. C., Mazorra-Manzano, M. Á., Osuna-Ruiz, I., Rodríguez-Tirado, V. A. & Salazar-Leyva, J. A. (2017). Partial characterization of the proteolytic properties of an enzymatic extract from “Aguama” Bromelia pinguin L. Fruit grown in Mexico. Appl. Biochem. Biotechnol., 182, 181-196. DOI: 10.1007/s12010-016-2319-x.
Natalucci, C. L., Brullo, A., López, L. M. I., Hilal, R.M. & Caffini, N. O. (1996). Macrodontin, a new protease isolated from fruits of Pseudananas macrodontes (Morr.) Harms (Bromeliaceae). J. Food Biochem., 19, 443-454. DOI: 10.1111/j.1745-4514.1995. tb00547.x
Pannangpetch, P., Laupattarakasem, P., Kukongviriyapan, V., Kukongviriyapan, U., Kongyingyoes, B. & Aromdee, C. (2007). Antioxidant activity and protective effect against oxidative hemolysis of Clinacanthus nutans (Burm. f) Lindau. Songklanakarin J. Sci. Technol., 29, 1-9.
Przybylski, R., Firdaous, L., Châtaigné, G., Dhulster, P. & Nedjar, N. (2016). Production of an antimicrobial peptide derived from slaughterhouse by-product and its potential application on meat as preservative. Food Chem., 211, 306-313. DOI: 10.1016/j. foodchem.2016.05.074
Reinhardt, A. & Neundorf, I. (2016). Design and application of antimicrobial peptide conjugates. Int. J. Mol. Sci., 17(5), 701- 721. DOI: 10.3390/ijms17050701.
Sadredinamin, M., Mehrnejad, F., Hosseini, P. & Doustdar, F. (2016). Antimicrobial Peptides (AMPs). Novelty Biomed., 4, 70-76.
Saidi, S., Deratani, A., Belleville, M. P. & Amar, R. B. (2014). Antioxidant properties of peptide fractions from tuna dark muscle protein by-product hydrolysate produced by membrane fractionation process. Food Res. Int., 65, 329–336. DOI: 10.1016/j.foodres.2014.09.023
Scott, M. G., Gold, M. R. & Hancock, R. E. (1999). Interaction of cationic peptides with lipoteichoic acid and gram-positive bacteria. Infect. Immun., 67, 6445-6453.
Sila, A. & Bougatef, A. (2016). Antioxidant peptides from marine by-products: isolation, identification and application in food systems a review. J. Funct. Foods, 21, 10–26. DOI: 10.1016/j. jff.2015.11.007
Takebayashi, J., Chen, J. & Tai, A. (2010). A Method for Evaluation of antioxidant activity based on inhibition of free radical-induced rrythrocyte hemolysis. En: Armstrong D. (Ed.), Advanced Protocols in Oxidative Stress II. Methods in Molecular Biology (Methods and Protocols) (pp.287-296). Totowa, NJ, USA: Editorial Humana Press, Springer.
Vineethkumar, T. V., Asha, R., Shyla, G. & George, S. (2017). Posttranslationally modified frog skin-derived antimicrobial peptides are effective against Aeromonas sobria. Microb. Pathog., 104, 287-288. DOI: 10.1016/j.micpath.2017.01.052
Vioque, J., Predoche, J., Yust, M. M., Lqari, H., Megías, C., Girón- Calle, J., Aliaz, M. & Millán, F. (2006). Peptídeos bioativos em proteínas vegetais de reserva. Rio de Janeiro, Brasil: Brazilian Journal of Food Technology III JIPCA, 1:99–102.
Wang, P., Bang, J. K., Kim, H. J., Kim, J. K., Kim, Y. & Shin, S. Y. (2009). Antimicrobial specificity and mechanism of action of disulfide-removed linear analogs of the plant-derived Cys-rich antimicrobial peptide Ib-AMP1. Peptides, 30, 2144-2149. DOI: 10.1016/j.peptides.2009.09.020
Wu, H. C., Chen, H. M. & Shiau, C. Y. (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int., 36(9), 949-957. DOI: 10.1016/S0963-9969(03)00104-2.
Xiong, Y. L. (2010). Functions of biologically active proteins and peptides: Antioxidant peptides. En: Y., Mine, E., Li-Chan & Jiang, B. (Ed.). Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals (pp. 29-42). Iowa, USA: IFT Press, Wiley-Blackwell.
Zhang, F., Cui, X., Fu, Y., Zhang, J., Zhou, Y., Sun, Y., Wang, X., Li, Y., Liu, Q. & Chen, T. (2017). Antimicrobial activity and mechanism of the human milk-sourced peptide casein201. Biochem. Biophys. Res. Commun., 485, 698-704. DOI: 10.1016/j.bbrc.2017.02.108.
Zheng, L., Dong, H., Su, G., Zhao, Q. & Zhao, M. (2016). Radical scavenging activities of Tyr-, Trp-, Cys-and Met-Gly and their protective effects against AAPH-induced oxidative damage in human erythrocytes. Food Chem., 197, 807-813. DOI: 10.1016/j.foodchem.2015.11.012.