2018, Number S1
Next >>
TIP Rev Esp Cienc Quim Biol 2018; 21 (S1)
Characterization of acute phase proteins associated with a porcine epidemic diarrhea virus outbreak in suckling piglets and sows in Mexico
Hernández-Trujillo E, Bolaños-López D, Beltrán-Figueroa RR, Sarmiento-Silva E, Juárez-López N, Trujillo-Ortega ME
Language: English
References: 74
Page: 5-12
PDF size: 784.99 Kb.
ABSTRACT
The objective of this study was to determine the relationships between four acute phase proteins (APP), and the
pathological effects of porcine epidemic diarrhea virus (PEDV) in piglets and sows. Virus detection was done in
laboratory (PCR method) with feces samples. Blood samples were obtained from lactating sows and piglets that
survived the first day of life according to the presence or absence of characteristic enteric signs (ES) of the disease:
vomiting and diarrhea. (I) Neonatal piglets without ES (n=7), (II) Neonatal piglets with ES (n=8), (III) Sows without ES (n=6),
and (IV) Sows with ES (n=6). To determine the APP concentration in blood, serum amyloid A (SAA) and haptoglobin
(HAP) were determined by a non species specific commercial ELISA assay. C-reactive protein (CRP) and PIGMAP
serum levels were quantified by monoclonal antibody sandwich ELISA assay. Finally, no significant differences (P›0.05)
were found in serum concentrations of different APP between piglets and sows with and without ES. Piglet survival is
linked by the degree of dehydration during diarrhea; PEDV causes ES quickly and severely before of the induction
of pro inflammatory cytokines, but this pathological synthesis still remains unclear.
REFERENCES
Barbé, F., Atanasova, K. & Van Reeth, K. (2011). Cytokines and acute phase proteins associated with acute swine influenza infection in pigs. Veterinary Journal, 187, 48-53. doi: 10.1016/j.tvjl.2009.12.012
Carvajal, A., Argüello, H., Martínez-Lobo, F.J., Costillas, S., Miranda, R., De Nova, P.J.G. & Rubio, P. (2015). Porcine epidemic diarrhea: new insights into an old disease. Porcine health management, 1, 12. doi: 10.1186/ s40813-015-0007-9
Che, T.M., Song, M., Liu, Y., Johnson, R.W., Kelley, K.W., Van Alstine, W.G., Dawson, K.A. & Pettigrew, J.E. (2012). Mannan oligosaccharide increases serum concentrations of antibodies and inflammatory mediators in weanling pigs experimentally infected with porcine reproductive and respiratory syndrome virus. Journal of Animal Science, 90, 2784-2793. doi: 10.2527/jas.2011-4518
Chen, Q., Li, G., Stasko, J., Thomas, J.T., Stensland, W.R., Pillatzki, A.E., Gauger, P.C., Schwartza, K.J., Madsona, D., Yoona, K., Stevensona, G.W., Burrougha, E.R., Harmona, K.M., Maina, R.G. & Zhanga, J. (2014). Isolation and characterization of porcine epidemic diarrhea viruses associated with the 2013 disease outbreak among swine in the united states. Journal Clinical Microbiology, 52, 234-243. doi: 10.1128/JCM.02820-13
Cray, C. (2012) Acute Phase Proteins in Animals. Progress in Molecular Biology and Translational Science, 150, 113-150. doi: 10.1016/B978-0-12-394596-9.00005-6
Cray, C., Zaias, J. & Altman, N.H. (2009). Acute phase response in animals: a review. Comparative Medicine, 59, 517-526.
Eckersall, P.D. & Bell, R. (2010). Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. Veterinary Journal, 185, 23-27. doi: 10.1016/j. tvjl.2010.04.009
Gabay, C. & Kushner, I. (1999). Acute phase proteins and other systemic responses to inflammation. The New England Journal of Medicine, 340, 448-454. doi: 10.1056/ NEJM199902113400607
Gómez-Laguna, J., Rodríguez-Gómez, I.M., Barranco-Cabezudo, I., Quereda, J.J., García-Nicolás, O., Ramis, G., Palláres, F.J. & Carrasco-Otero, L. (2011). Bases de la respuesta inflamatoria en la forma respiratoria del PRRS. Anales de la Real Academia de Ciencias Veterinarias de Andalucía Oriental, 24, 157-165.
Grau-Roma, L., Heegaard, P.M.H., Hjulsager, C.K., Sibila, M., Kristensen, C.S., Allepuz, A., Piñeiro, M., Larsen, L.E., Segals, J. & Fraile. L. (2009). Pig-Major acute phase protein and haptoglobin serum concentrations correlate with PCV2 viremia and the clinical course of postweaning multisystemic wasting syndrome. Veterinary Microbiology, 138, 53–61. doi: 10.1016/j. vetmic.2009.03.005
Hoang, H., Killian, M.L., Madson, D.M., Arruda, P.H.E., Sun, D., Schwartz, K.J. & Yoon, J. (2013). Full-length genome sequence of a plaque-cloned virulent porcine epidemic diarrhea virus isolate (USA / Iowa / 18984 / 2013) from a Midwestern U.S. swine herd. Genome Announcements, 1, 1-2. doi: 10.1128/genomeA.01049-13
Hultén C., Johansson, E., Fossum, C. & Wallgren, P. (2003). Interleukin 6, serum amyloid A and haptoglobin as markers of treatment efficacy in pigs experimentally infected with Actinobacillus pleuropneumoniae. Veterinary Microbiology, 95, 75–89. doi: 10.1016/ S0378-1135(03)00136-6
Jung, K. & Saif, L.J. (2015). Porcine epidemic diarrhea virus infection: etiology, epidemiology, pathogenesis and immunoprophylaxis. Veterinary Journal, 204, 134-143. doi: 10.1016/j.tvjl.2015.02.017
Jung, K., Wang, Q., Scheuer, K.A., Lu, Z., Zhang, Y. & Saif, L.J. (2014). Pathology of US porcine epidemic diarrhea virus strain PC21A in gnotobiotic pigs. Emerging Infectious Diseases, 20, 662-665. doi: 10.3201/eid2004.131685
Kakuschke, A., Erbsloeh, H.B., Griesel, S. & Prange, A. (2010). Acute phase protein haptoglobin in blood plasma samples of harbour seals (Phoca vitulina) of the Wadden sea and of the isle Helgoland. Comparative Biochemistry and Physiology - Part B: Biochemistry & Molecular Biology, 155, 67-71. doi: 10.1016/j.cbpb.2009.10.002
Kim, O. & Chae, C. (2000). In situ hybridization for the detection and localization of porcine epidemic diarrhea virus in the intestinal tissues from naturally infected piglets. Veterinary Pathology, 37, 62-67. doi: 10.1354/ vp.37-1-62
Kim, Y. & Lee, C. (2014). Porcine epidemic diarrhea virus induces caspase-independent apoptosis through activation of mitochondrial apoptosis-inducing factor. Virology, 460-461, 180-193. doi: 10.1016/j.virol.2014.04.040
Langel, S.N., Paim, F.C., Lager, K.M., Vlasova, A.N. & Saif, L. (2016). Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): historical and current concepts. Virus Research, 226, 93-107. doi: 10.1016/j. virusres.2016.05.016
Llamas-Moya, S., Boyle, L.A., Lynch, P.B. & Arkins, S. (2007). Age-related changes in pro-inflammatory cytokines, acute phase proteins and cortisol concentrations in neonatal piglets. Neonatology, 91 44-48. doi: 10.1159/000096970
Llamas-Moya, S., Boyle, L.A., Lynch, P.B. & Arkins, S. (2008). Effect of surgical castration on the behavioural and acute phase responses of 5-day-old piglets. Applied Animal Behaviour Science, 111, 133-145. doi: 10.1016/j. applanim.2007.05.019
Madson D.M., Magstadt, D.R., Arruda, P.H., Hoang, H., Sun, D., Bower, L.P., Bhandari, M., Burrough, E.R., Gauger, P.C., Pillatzki, A.E., Stevenson, G.W., Wilberts, B.L., Brodie, J., Harmon, K.M., Wang, C., Main, R.G., Zhang, J. & Yoon. K.J. (2014). Pathogenesis of porcine epidemic diarrhea virus isolate (US/Iowa/18984/2013) in 3-weekold weaned pigs. Veterinary Microbiology, 174, 60-68. doi: 10.1016/j.vetmic.2014.09.002
Murata, H., Shimada, N. & Yoshioka, M. (2004). Current research on acute phase proteins in veterinary diagnosis: an overview. Veterinary Journal, 168, 28-40. doi: 10.1016/ S1090-0233(03)00119-9
Murtaugh, M.P., Baarsch, M.J., Zhou, Y., Scamurra, R.W. & Lin, G. (1996). Inflammatory cytokines in animal health and disease. Veterinary Immunology and Immunopathology, 54, 45-55. doi: 10.1016/S0165-2427(96)05698-X
Park, J.E. & Shin, H.J. (2014). Porcine epidemic diarrhea virus infects and replicates in porcine alveolar macrophages. Virus Research, 191, 143-152. doi: 10.1016/j. virusres.2014.07.038
Parra, M.D., Fuentes, P., Tecles,F., Martinez-Subiela, S., Martinez, J.S., Munoz, A. & Ceron, J.J. (2006). Porcine acute phase protein concentrations in different diseases in field conditions. Journal of veterinary medicine. B, Infectious diseases and veterinary public health, 53, 488-493. doi: 10.1111/j.1439-0450.2006.01002.x
Petersen, H.H., Nielsen J.P. & Heegaard, P.M.H. (2004). Application of acute phase protein measurements in veterinary clinical chemistry. Veterinary Research, 35, 163-187. doi: 10.1051/vetres:2004002
Piñeiro, C., Piñeiro, M., Morales, J., Carpintero, R., Campbell, F.M., Eckersall, P.D., Toussaint, M.J.M., Alava, M.A. & Lampreave, F. (2007a). Pig acute-phase protein levels after stress induced by changes in the pattern of food administration. Animal, 1, 133-139. doi: 10.1017/ S1751731107283909
Piñeiro, M., Piñeiro, C., Carpintero, R., Morales, J., Campbell, F.M., Eckersall, P.D., Toussaint, J.M. & Lampreave, F. (2007b). Characterization of the pig acute phase protein response to road transport. Veterinary Journal, 173, 669–674. doi: /10.1016/j.tvjl.2006.02.006
Pomorska-Mól, M., Kwit, K. & Markowska-Daniel, I. (2012). Major acute phase proteins in pig serum from birth to slaughter. Bulletin of the Veterinary Institute in Pulawy, 56, 553-557. doi: 10.2478/v10213-012-0097-y
Pospischil A., Stuedli A., & Kiupel M. (2002) Diagnostic notes Update on porcine epidemic diarrhea. Journal of Swine Health and Production, 2, 81-85.
Salamano, G., Mellia, E., Candiani, D., Ingravalle,F., Bruno, R., Ru, G. & Doglione, L. (2008). Changes in haptoglobin, C-reactive protein and Pig-MAP during a housing period following long distance transport in swine. Veterinary Journal, 177, 110-115. doi: 10.1016/j.tvjl.2007.03.015
Sánchez-Cordón, P.J., Cerón, J.J., A. Núñez, A., Martínez-Subiela, S., Pedrera, M., Romero-Trevejo, J.L., Garrido, M.R. & Gómez-Villamandos, J.C. (2007). Serum concentrations of C-reactive protein, serum amyloid A, and haptoglobin in pigs inoculated with African swine fever or classical swine fever viruses. American Journal Veterinary Research, 68, 772-777. doi: 10.2460/ajvr.68.7.772
Schweer, W.P. (2015). Impact of PRRS and PED viruses on grower pig performance and intestinal function (Doctoral dissertation, Iowa State University), pp.188, paper No. 14492. Iowa State, USA.
Singh, S.K. (2016). Middle east respiratory syndrome virus pathogenesis. Seminars in Respiratory and Critical Care Medicine, 37, 572-577. doi: 10.1055/s-0036-1584796
Skovgaard, K., Mortensen, S., Boye, M., Poulsen, K.T., Campbell, F.M., Eckersall, P.D. & Heegaard, P.M.H. (2009). Rapid and widely disseminated acute phase protein response after experimental bacterial infection of pigs. Veterinary Research, 40, 1-12. doi: 10.1051/vetres/2009006
Song, D. & Park, B. (2012). Porcine epidemic diarrhea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines. Virus Genes, 44, 167–175. doi: 10.1007/s11262-012-0713-1
Stevenson, G.W., Hoang, H., Schwartz, K.J., Burrough, E.R., Sun, D., Madson D., Cooper, V.L., Pillatzki, A., Gauger, P., Schmitt, B.J., Koster, L.G., Killian, M.L. & Yoon K.J. (2013). Emergence of porcine epidemic diarrhea virus in the united states: clinical signs, lesions, and viral genomic sequences. Journal of Veterinary Diagnostic Investigation, 25, 649–654. doi: 10.1177/1040638713501675
Tam, C.S., Wong, M., Tam, K., Aouad, L. & Waters, K.A. (2007). The effect of acute intermittent hypercapnic hypoxia treatment on IL-6, TNF-Alpha, and CRP levels in piglets. Sleep, 30, 723–727. doi: 10.1093/sleep/30.6.723
Vlasova, A.N., Marthaler, D., Wang, Q., Culhane M.R., Rossow, K.D., Rovira, A., Collins, J. & Saif, L.J. (2014). Distinct characteristics and complex evolution of PEDV strains, North America, May 2013-February 2014. Emerging Infectious Diseases, 20, 1620–1628. doi: 10.3201/ eid2010.140491
Wallgren, P., Brunborg, I.M., Blomqvist, G., Bergström, G., Wikström, F., Allan, G., Fossum, C. & Jonassen, C.M. (2009). The index herd with PMWS in Sweden: Presence of serum amyloid A, Circovirus 2 viral load and antibody levels in healthy and PMWS-affected pigs. Acta Veterinaria Scandinavica, 51, 13. doi: 10.1186/1751- 0147-51-13.
Abdel-Hamid, M., Otte, J., De Gobba, C., Osman, A. & Hamad, E. (2017). Angiotensin I-converting enzyme inhibitory activity and antioxidant capacity of bioactive peptides derived from enzymatic hydrolysis of buffalo milk proteins. Int. Dairy J., 66, 91-98. DOI: 10.1016/j.idairyj.2016.11.006.
Aguilar-Toalá, J. E., Santiago-López, L., Peres, C. M., Peres, C., García, H. S., Vallejo-Córdoba, B., González-Córdoba A.F. & Hernández-Mendoza, A. (2017). Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains. J. Dairy Sci., 100, 65-75. DOI: 10.3168/jds.2016-11846.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Brötz, H., Bierbaum, G., Leopold, K., Reynolds, P. E. & Sahl, H. G. (1998). The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob. Agents Chemother., 42, 154-160.
Cho, M. J., Unklesbay, N., Hsieh, F. H. & Clarke, A. D. (2004). Hydrophobicity of bitter peptides from soy protein hydrolysates. J. Agric. Food Chem., 52, 5895-5901. DOI: 10.1021/jf0495035.
Chopra, I. & Greenwood, D. (2001). Antibacterial Agents: Basis of Action. En: Battista, J. (Ed.), Encyclopedia of life sciences (pp. 1–8). Hoboken, New Jersey: Wiley, Ltd.
Dziuba, B. & Dziuba, M. (2014). New milk protein-derived peptides with potential antimicrobial activity: An approach based on bioinformatic studies. Int. J. Mol. Sci., 15, 14531-14545. DOI:10.3390/ijms150814531.
Eloff, J. N. (1998). A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med., 64, 711-713. DOI: 10.1055/s-2006-957563.
Ghosh, C. & Haldar, J. (2015). Membrane-active small molecules: designs inspired by antimicrobial peptides. Chem. Med. Chem., 10, 1606-1624. DOI: 10.1002/cmdc.201500299.
Headon, D.R. & Walsh, G. (1994). The industrial production of enzymes. Biotechnol. Adv., 12, 635-646. DOI: 10.1016/0734- 9750(94)90004-3.
Huang, J. F., Xu, Y. M., Hao, D. M., Huang, Y. B., Liu, Y. & Chen, Y. (2010). Structure-guided de novo design of α-helical antimicrobial peptide with enhanced specificity. Pure Appl. Chem., 82, 243-257. DOI: 10.1351/PAC-CON-09-01-12.
Kavanagh, K. & Dowd, S. (2004). Histatins: antimicrobial peptides with therapeutic potential. J. Pharm. Pharmacol., 56, 285-289. DOI: 10.1211/0022357022971.
Klompong, V., Benjakul, S., Kantachote, D., & Shahidi, F. (2007). Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem., 102, 1317–1327. DOI: 10.1016/j. foodchem.2006.07.016.
Kumar, D., Chatli, M. K., Singh, R., Mehta, N. & Kumar, P. (2016). Antioxidant and antimicrobial activity of camel milk casein hydrolysates and its fractions. Small Rumin. Res., 139, 20-25. DOI: 10.1016/j.smallrumres.2016.05.002.
Liu, J., Jin, Y., Lin, S., Jones, G. S. & Chen, F. (2015). Purification and identification of novel antioxidant peptides from egg white protein and their antioxidant activities. Food Chem., 175, 258- 266. DOI: 10.1016/j.foodchem.2014.11.142.
Maria-Neto, S., de Almeida, K. C., Macedo, M. L. R. & Franco, O. L. (2015). Understanding bacterial resistance to antimicrobial peptides: From the surface to deep inside. Biochim. Biophys. Acta., 1848, 3078-3088. DOI: 10.1016/j.bbamem.2015.02.017.
Meza-Espinoza, L., Vivar-Vera, M. A., García-Magaña, M.L., Sáyago- Ayerdi, S. G., Chacón-López, A., Becerra-Verdín, E. M. &
Montalvo-González, E. (2017). Enzyme activity and partial characterization of proteases obtained from Bromelia karatas fruit and compared with Bromelia pinguin proteases. Food Sci. Biotechnol. (In press) DOI: 10.1007/s10068-017-0244-6. Moreno-Hernández, J. M., Hernández-Mancillas, X. D., Navarrete, E. L. C., Mazorra-Manzano, M. Á., Osuna-Ruiz, I., Rodríguez-Tirado, V. A. & Salazar-Leyva, J. A. (2017). Partial characterization of the proteolytic properties of an enzymatic extract from “Aguama” Bromelia pinguin L. Fruit grown in Mexico. Appl. Biochem. Biotechnol., 182, 181-196. DOI: 10.1007/s12010-016-2319-x.
Natalucci, C. L., Brullo, A., López, L. M. I., Hilal, R.M. & Caffini, N. O. (1996). Macrodontin, a new protease isolated from fruits of Pseudananas macrodontes (Morr.) Harms (Bromeliaceae). J. Food Biochem., 19, 443-454. DOI: 10.1111/j.1745-4514.1995. tb00547.x
Pannangpetch, P., Laupattarakasem, P., Kukongviriyapan, V., Kukongviriyapan, U., Kongyingyoes, B. & Aromdee, C. (2007). Antioxidant activity and protective effect against oxidative hemolysis of Clinacanthus nutans (Burm. f) Lindau. Songklanakarin J. Sci. Technol., 29, 1-9.
Przybylski, R., Firdaous, L., Châtaigné, G., Dhulster, P. & Nedjar, N. (2016). Production of an antimicrobial peptide derived from slaughterhouse by-product and its potential application on meat as preservative. Food Chem., 211, 306-313. DOI: 10.1016/j. foodchem.2016.05.074
Reinhardt, A. & Neundorf, I. (2016). Design and application of antimicrobial peptide conjugates. Int. J. Mol. Sci., 17(5), 701- 721. DOI: 10.3390/ijms17050701.
Sadredinamin, M., Mehrnejad, F., Hosseini, P. & Doustdar, F. (2016). Antimicrobial Peptides (AMPs). Novelty Biomed., 4, 70-76.
Saidi, S., Deratani, A., Belleville, M. P. & Amar, R. B. (2014). Antioxidant properties of peptide fractions from tuna dark muscle protein by-product hydrolysate produced by membrane fractionation process. Food Res. Int., 65, 329–336. DOI: 10.1016/j.foodres.2014.09.023
Scott, M. G., Gold, M. R. & Hancock, R. E. (1999). Interaction of cationic peptides with lipoteichoic acid and gram-positive bacteria. Infect. Immun., 67, 6445-6453.
Sila, A. & Bougatef, A. (2016). Antioxidant peptides from marine by-products: isolation, identification and application in food systems a review. J. Funct. Foods, 21, 10–26. DOI: 10.1016/j. jff.2015.11.007
Takebayashi, J., Chen, J. & Tai, A. (2010). A Method for Evaluation of antioxidant activity based on inhibition of free radical-induced rrythrocyte hemolysis. En: Armstrong D. (Ed.), Advanced Protocols in Oxidative Stress II. Methods in Molecular Biology (Methods and Protocols) (pp.287-296). Totowa, NJ, USA: Editorial Humana Press, Springer.
Vineethkumar, T. V., Asha, R., Shyla, G. & George, S. (2017). Posttranslationally modified frog skin-derived antimicrobial peptides are effective against Aeromonas sobria. Microb. Pathog., 104, 287-288. DOI: 10.1016/j.micpath.2017.01.052
Vioque, J., Predoche, J., Yust, M. M., Lqari, H., Megías, C., Girón- Calle, J., Aliaz, M. & Millán, F. (2006). Peptídeos bioativos em proteínas vegetais de reserva. Rio de Janeiro, Brasil: Brazilian Journal of Food Technology III JIPCA, 1:99–102.
Wang, P., Bang, J. K., Kim, H. J., Kim, J. K., Kim, Y. & Shin, S. Y. (2009). Antimicrobial specificity and mechanism of action of disulfide-removed linear analogs of the plant-derived Cys-rich antimicrobial peptide Ib-AMP1. Peptides, 30, 2144-2149. DOI: 10.1016/j.peptides.2009.09.020
Wu, H. C., Chen, H. M. & Shiau, C. Y. (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int., 36(9), 949-957. DOI: 10.1016/S0963-9969(03)00104-2.
Xiong, Y. L. (2010). Functions of biologically active proteins and peptides: Antioxidant peptides. En: Y., Mine, E., Li-Chan & Jiang, B. (Ed.). Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals (pp. 29-42). Iowa, USA: IFT Press, Wiley-Blackwell.
Zhang, F., Cui, X., Fu, Y., Zhang, J., Zhou, Y., Sun, Y., Wang, X., Li, Y., Liu, Q. & Chen, T. (2017). Antimicrobial activity and mechanism of the human milk-sourced peptide casein201. Biochem. Biophys. Res. Commun., 485, 698-704. DOI: 10.1016/j.bbrc.2017.02.108.
Zheng, L., Dong, H., Su, G., Zhao, Q. & Zhao, M. (2016). Radical scavenging activities of Tyr-, Trp-, Cys-and Met-Gly and their protective effects against AAPH-induced oxidative damage in human erythrocytes. Food Chem., 197, 807-813. DOI: 10.1016/j.foodchem.2015.11.012.