2018, Number 2
<< Back
TIP Rev Esp Cienc Quim Biol 2018; 21 (2)
Computer-aided drug design: when informatics, chemistry and art meets
Prieto-Martínez FD, Medina-Franco JL
Language: Spanish
References: 29
Page: 124-134
PDF size: 1012.91 Kb.
ABSTRACT
The pharmaceutical industry is in constant evolution being the driving force, discovery and development
of new drugs. In the past, drug discovery was basically based on natural products that were later modified
by chemical synthesis. Despite the fact such strategy continues to be valuable, the cost and time of current
drug discovery is very high. Currently, the advancement in the development of more powerful and efficient
computers has enabled to develop methods and simulations that are optimizing at certain point the drug
discovery outllook. In this work we introduce major computational methods and techniques that aid the drug
discovery process emphasizing chemoinformatics concepts, their basis and applications.
REFERENCES
Bajusz, D., Rácz, A., & Héberger, K. (2015). Why is Tanimoto Index an Appropriate Choice for Fingerprint-Based Similarity Calculations? J. Cheminformatics, 7, 20. DOI: 10.1186/s13321-015-0069-3
Bender, A., Jenkins, J. L., Scheiber, J., Sukuru, S. C. K., Glick, M., & Davies, J. W. (2009). How Similar are Similarity Searching Methods? A Principal Component Analysis of Molecular Descriptor Space. J. Chem. Inf. Model., 49, 108–119. DOI: 10.1021/ci800249s
Brown, C. D., & Davis, H. T. (2006). Receiver Operating Characteristics Curves and Related Decision Measures: A Tutorial. Chemometr. Intell. Lab., 80, 24–38. DOI: 10.1016/j.chemolab.2005.05.004
Clayton, T., Chen, J. L., Ernst, M., Richter, L., Cromer, B. A., Morton, C. J. & Cook, J. M. (2007). An Updated Unified Pharmacophore Model of the Benzodiazepine Binding Site on Gamma-Aminobutyric Acid(A) Receptors: Correlation with Comparative Models. Curr. Med. Chem., 14, 2755–2775. DOI: 10.2174/092986707782360097
De Cesco, S., Kurian, J., Dufresne, C., Mittermaier, A., & Moitessier, N. (2017). Covalent Inhibitors Design and Discovery. Eur. J. Med. Chm., 138, 96–114. DOI: 10.1016/j.ejmech.2017.06.019
Duan, X., Zhang, M., Zhang, X., Wang, F., & Lei, M. (2015). Molecular Modeling and Docking Study on Dopamine D2-Like and Serotonin 5-HT2A Receptors. J. Mol. Graph. Model., 57, 143–155. DOI: 10.1016/j.jmgm.2015.01.014
Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular Docking and Structure-Based Drug Design Strategies. Molecules, 20, 13384-13421. DOI: 10.3390/ molecules200713384
Ferri, E., Petosa, C., & McKenna, C. E. (2016). Bromodomains: Structure, Function and Pharmacology of Inhibition. Biochem. Pharmacol. 106, 1-18. DOI: 10.1016/j.bcp.2015.12.005
Hillisch, A., Pineda, L. F., & Hilgenfeld, R. (2004). Utility of Homology Models in the Drug Discovery Process. Drug Discov Today. 9, 659-669. DOI: 10.1016/S1359-6446(04)03196-4
Hu, Y., & Bajorath, J. (2010). Molecular Scaffolds with High Propensity to form Multi-Target Activity Cliffs. J. Chem. Inf. Model., 50, 500–510. DOI: 10.1021/ci100059q
Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and Scoring in Virtual Screening for Drug Discovery: Methods and Applications. Nat. Rev. Drug Discov., 3, 935–949. DOI: 10.1038/nrd1549
Koes, D. R., & Camacho, C. J. (2011). Pharmer: Efficient and Exact Pharmacophore Search. J. Chem. Inf. Model., 51, 1307–1314. DOI: 10.1021/ci200097m
Kumalo, H. M., Bhakat, S., & Soliman, M. E. S. (2015). Theory and Applications of Covalent Docking in Drug Discovery: Merits and Pitfalls. Molecules, 20, 1984–2000. DOI: 10.3390/ molecules20021984
Leffler, A. E., Kuryatov, A., Zebroski, H. A., Powell, S. R., Filipenko, P., Hussein, A. K. & Holford, M. (2017). Discovery of Peptide Ligands Through Docking and Virtual Screening at Nicotinic Acetylcholine Receptor Homology Models. P. Natl. Acad. Sci. USA, 114, E8100–E8109. DOI: 10.1073/pnas.1703952114
Maggiora, G. M., Vogt, M., Stumpfe, D., & Bajorath, J. J. (2013). Molecular Similarity in Medicinal Chemistry. J. Med. Chem., 57, 3186–3204. DOI: 10.1021/jm401411z
Medina-Franco, J. L. (2013). Activity Cliffs: Facts or Artifacts? Chem. Biol. Drug Des., 81, 553–556. DOI: 10.1111/cbdd.12115
Méndez-Lucio, O., Naveja, J. J., Vite-Caritino, H., Prieto-Martínez, F. D., & Medina-Franco, J. L. (2016). Review. One Drug for Multiple Targets: A Computational Perspective. J. Mex. Chem. Soc, 60, 168–181.
Mestres, J. (2005). Representativity of Target Families in the Protein Data Bank: Impact for Family-Directed Structure-Based Drug Discovery. Drug Discovery Today, 10, 1629–1637. DOI: 10.1016/ S1359-6446(05)03593-2
Pagadala, N. S., Syed, K., & Tuszynski, J. (2017). Software for Molecular Docking: A Review. Biophys. Rev. 9, 91-102. DOI: 10.1007/s12551-016-0247-1
Pérez-Villanueva, J., Romo-Mancillas, A., Hernández-Campos, A., Yépez-Mulia, L., Hernández-Luis, F., & Castillo, R. (2011). Antiprotozoal Activity of Proton-pump Inhibitors. Bioorg. Med. Chem. Lett., 21, 7351–7354. DOI: 10.1016/j.bmcl.2011.10.028
Ponder, J. W., & Case, D. A. (2003). Force Fields for Protein Simulations. Adv. Protein Chem., 66, 27–85. DOI: 10.1016/ S0065-3233(03)66002-X
Prieto-Martínez, F. D., Fernández-de Gortari, E., Méndez-Lucio, O., & Medina-Franco, J. L. (2016). A Chemical Space Odyssey of Inhibitors of Histone Deacetylases and Bromodomains. RSC Adv., 6, 56225–56239. DOI: 10.1039/C6RA07224K
Saldívar-González, F., Prieto-Martínez, F. D., & Medina-Franco, J. L. (2017). Descubrimiento y Desarrollo de Fármacos: Un Enfoque Computacional. Educación Química, 28, 51–58. DOI: 10.1016/j. eq.2016.06.002
Santos, R., Ursu, O., Gaulton, A., Bento, A. P., Donadi, R. S., Bologa, C. G. & Overington, J. P. (2016). A Comprehensive Map of Molecular Drug Targets. Nature Reviews Drug Discovery, 16, 19–34. DOI: 10.1038/nrd.2016.230
Spyrakis, F., & Cavasotto, C. N. (2015). Open Challenges in Structure- Based Virtual Screening: Receptor Modeling, Target Flexibility Consideration and Active Site Water Molecules Description. Arch. Biochem. Biophys., 583, 105-109. DOI: 10.1016/j. abb.2015.08.002
Verdonk, M. L., Taylor, R. D., Chessari, G., & Murray, C. W. (2007). Illustration of Current Challenges in Molecular Docking. In Structure-Based Drug Discovery (pp. 201–221). Dordrecht: Springer Netherlands. DOI: 10.1007/1-4020-4407-0_8
Virshup, A. M., Contreras-García, J., Wipf, P., Yang, W., & Beratan, D. N. (2013). Stochastic Voyages into Uncharted Chemical Space Produce a Representative Library of All Possible Drug-Like Compounds. J. Am. Chem. Soc. 135, 7296–7303. DOI: 10.1021/ ja401184g
Wallisch, P. (2014). Principal Components Analysis. MATLAB for Neuroscientists, 305–315. DOI: 10.1016/B978-0-12-383836- 0.00017-5
Warren, G. L., Do, T. D., Kelley, B. P., Nicholls, A., & Warren, S. D. (2012). Essential Considerations for Using Protein-Ligand Structures in Drug Discovery. Drug Discovery Today, 17, 1270–1281. DOI: 10.1016/j.drudis.2012.06.011