2018, Number S2
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2018; 21 (S2)
Functionalized edible films and coatings
Solano-Doblado LG, Alamilla-Beltrán L, Jiménez-Martínez C
Language: Spanish
References: 79
Page: 30-42
PDF size: 624.11 Kb.
ABSTRACT
Pests and inadequate post-harvest handling has led to losses in horticultural products, therefore the development
and production of edible biodegradable films has been sought as an alternative in recent years. These edible films
are made with materials such as carbohydrates, proteins, or lipids, with physical and mechanical characteristics
similar to the non-degradable packaging, but with the advantage of having a bioactive function as barriers; by
adding vegetable extracts, edible biodegradable films may exert antimicrobial activity, protection against UV
and visible light, against carriers of antioxidants and/or dyes, along with improving the visual characteristics of the
product. Because of these attributes, edible biodegradable films have been referred to as “Intelligent films”, since
considerable progress has been observed in their elaboration, such as the presence of colorful sensors capable of
detecting chemical changes and the presence of microorganisms in foods, revealing the state in which they are
optimal and even if they are or not in an adequate state for consumption. The objective of this work is to make
a summary of various research and current trends in the study and development of edible films and coatings,
emphasizing their application in the horticultural chain and their effect on fresh and minimally processed foods.
REFERENCES
Aguilar, M. M. (2005). Propiedades físicas y mecánicas de películas biodegradables y su empleo en el recubrimiento de frutos de aguacate. En Tesis de Maestría en Tecnología avanzada (pág. 112). Ciudad de México: Instituto Politécnico Nacional. http:// repositoriodigital.ipn.mx/handle/ 123456789/10573
Aguirre-Cárdenas, M., García-Delgado, P., González-González, R., Jofre Garfias, A. L., Legorreta-Siañez, A.V. & Buenrostro- Zagal, J. F. (2011). Desarrollo y evaluación de una película comestible obtenida del mucílago del nopal (Opuntia ficus indica) utilizada para reducir la tasa de respiración de nopal verdura. In: VIII Congreso Iberoamericano de Ingeniería de Alimentos. Lima, Perú 23 al 26 de octubre. 1-5. pp. https:// dialnet.unirioja.es/servlet/articulo?codigo=4106660
Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry. LWT-Food Science and Technology, 43(6), 837-842. https://doi.org/10.1016/j. lwt.2010.01.021
Arredondo-Ochoa, T. (2012). Diseño de empaques comestibles activos a base de almidón modificado para su posible aplicación en alimentos en fresco (Tesis Maestría). Universidad Autónoma de Querétaro. 1-82. http://hdl.handle.net/123456789/929
Arvanitoyannis, I., Kolokuris, I., Nakayama, A. & Aiba, S. I. (1997). Preparation and study of novel biodegradable blends based on gelatinized starch and 1, 4-trans-polyisoprene (gutta percha) for food packaging or biomedical applications. Carbohydrate Polymers, 34(4), 291-302. https://doi.org/10.1016/S0144- 8617(97)00085-4
Atarés, L., Bonilla, J. & Chiralt, A. (2010). Characterization of sodium caseinate-based edible films incorporated with cinnamon or ginger essential oils. Journal of Food Engineering, 100(4), 678-687. https://doi.org/10.1016/j.jfoodeng.2010.05.018
Avendaño-Romero, G., López-Malo, A. & Paolu, E. (2013). Propiedades del alginato y aplicaciones en alimentos. Temas selectos de Ingeniería de Alimentos, 7(1), 87-96. http://web.udlap.mx/ tsia/files/2013/12/TSIA-71-Avendano-Romero-et-al-2013.pdf
Ávila-Sosa, R., Palou, E., Munguía, M. T. J., Nevárez-Moorillón, G. V., Cruz, A. R. N. & López-Malo, A. (2012). Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. International Journal of Food Microbiology, 153(1-2), 66-72. DOI: 10.1016/j. ijfoodmicro.2011.10.017
Badui Dergal, S. & Cejudo Gómez, H. R. T. (2006). Química de los alimentos. Pearson educación, México
Bósquez-Molina, E. & Vernon-Carter, E. J. (2005). Efecto de plastificantes y calcio en la permeabilidad al vapor de agua de películas a base de goma de mezquite y cera de candelilla. Revista Mexicana de Ingeniería Química, 4(2), 157-162. http://www.redalyc.org/articulo.oa?id=62040203
Cagri, A., Ustunol, Z. & Ryser, E. T. (2004). Antimicrobial edible films and coatings. Journal of Food Protection, 67(4), 833-848. DOI: 10.4315/0362-028X-67.4.833
Campos, C. A., Gerschenson, L. N. & Flores, S. K. (2011). Development of edible films and coatings with antimicrobial activity. Food and Bioprocess Technology, 4(6), 849-875. https://doi. org/10.1007/s11947-010-0434-1
Cárdenas, G., Díaz V.J., Meléndrez, M. F., Cruzat C.C. & García Cancino, A. (2009). Colloidal Cu nanoparticles/chitosan composite film obtained by microwave heating for food package applications. Polymer bulletin, 62(4), 511-524. https://doi. org/10.1007/s00289-008-0031-x
Carmona Gallego, J. A., Cordobés, F., Guerrero Conejo, A. F., Martínez, I. & Partal López, P. (2007). Influencia del pH y de la fuerza iónica sobre la gelificación térmica de proteínas de la yema de huevo. Grasas y aceites, 58(3), 289-296. http://hdl.handle. net/11441/54857
Carneiro-da-Cunha, M. G., Cerqueira, M. A., Souza, B. W., Carvalho, S., Quintas, M. A., Teixeira, J. A. & Vicente, A. A. (2010). Physical and thermal properties of a chitosan/alginate nanolayered PET film. Carbohydrate Polymers, 82(1), 153-159. https://doi. org/10.1016/j.carbpol.2010.04.043
Carpiné, D., Dagostin, J. L. A., Bertan, L. C. & Mafra, M. R. (2015). Development and characterization of soy protein isolate emulsion-based edible films with added coconut oil for olive oil packaging: Barrier, mechanical, and thermal properties. Food and bioprocess technology, 8(8), 1811-1823. https://doi. org/10.1007/s11947-015-1538-4
Cortés Tapia, C. P. (2007) Envases inteligentes. Universidad Andrés Bello, repositorio.unab.cl/xmlui/handle/ria/4352.
Díaz-González R. (2015). Films biodegradables antimicrobianos a base de almidón y gelatina. Universitat Politécnica de Valencia, 1-21. hdl.handle.net/10251/56543
Echeverri, N, Montoya, Ú., Zuluaga, R., Castro, C. & Gañán, P. (2011). Películas de almidón de papa reforzadas con celulosa bacteriana. Revista ReCiTeIA, 11(1) 83-91.
Escobar, D., Sala, A., Silvera, C., Harispe, R. & Márquez, R. (2009). Películas biodegradables y comestibles desarrolladas en base a aislado de proteínas de suero lácteo: estudio de dos métodos de elaboración y del uso de sorbato de potasio como conservador. Revista del Laboratorio tecnológico del Uruguay, 4, 33-36.
Espino-Díaz, M., De Jesús Ornelas-Paz, J., Martínez-Téllez, M. A., Santillán, C., Barbosa-Cánovas, G. V., Zamudio-Flores, P. B. & Olivas, G. I. (2010). Development and characterization of edible films based on mucilage of Opuntia ficus-Indica (l.). Journal of Food Science, 75(6). E347-E352. DOI: 10.1111/j.1750- 3841.2010.01661.x
Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A. & Ibarz, A. (2011). Edible films and coatings: structures, active functions and trends in their use. Trends in Food Science & Technology, 22(6), 292-303. https://doi.org/10.1016/j.tifs.2011.02.004
Fama, L., Rojas, A. M., Goyanes, S. & Gerschenson, L. (2005). Mechanical properties of tapioca-starch edible films containing sorbates. LWT-Food Science and Technology, 38(6), 631-639. https://doi.org/10.1016/j.lwt.2004.07.024
FAO. (2018). Despilfarro de alimentos: datos y cifras clave. Food wastage footprint, 1-5. http://www.fao.org/news/story/es/ item/196450/icode/
Flores, S. K., Costa, D., Yamashita, F., Gerschenson, L. N. & Grossmann, M. V. (2010). Mixture design for evaluation of potassium sorbate and xanthan gum effect on properties of tapioca starch films obtained by extrusion. Materials Science and Engineering: C, 30(1), 196-202. https://doi.org/10.1016/j. msec.2009.10.001
Fuciños, C., Míguez, M., Cerqueira, M. A., Costa, M. J., Vicente, A. A., Rúa, M. L. & Pastrana, L. M. (2015). Functional characterization and antimicrobial efficiency assessment of smart nanohydrogels containing natamycin incorporated into polysaccharide-based films. Food and Bioprocess Technology, 8(7), 1430-1441. https://doi.org/10.1007/s11947-015-1506-z
Gontard, N., Duchez, C., Cuq, J. L. & Guilbert, S. (1994). Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. International Journal of Food Science & Technology, 29(1), 39-50. https:// doi.org/10.1111/j.1365-2621.1994.tb02045.x
Gruère, G. P. (2012). Implications of nanotechnology growth in food and agriculture in OECD countries. Food Policy, 37(2), 191- 198. https://doi.org/10.1016/j.foodpol.2012.01.001
Hibberler R.C.(2006). Mecánica de materiales. 6ta. Edición. Pearson Educación. Mexico. ISBN 970-26-0639-3 pag 93-95.https:// archive.org/details/MecnicaDeMateriales Hibbeler8aEdiciin
Hong, S. I., Park, J. D. & Kim, D. M. (2000). Antimicrobial and physical properties of food packaging films incorporated with some natural compounds. Food Science and Biotechnology, 9(1), 38-42.
Huff, K. (2008). Active and intelligent packaging: innovations for the future. Department of Food Science & Technology. Virginia Polytechnic Institute and State University, Blacksburg, Va, 1-13. https://www.iopp.org/files/public/VirginiaTechKarleigh Huff.pdf
Jaworek, A. T. S. A. & Sobczyk, A. T. (2008). Electrospraying route to nanotechnology: an overview. Journal of electrostatics, 66(3- 4), 197-219. https://doi.org/10.1016/j.elstat.2007.10.001
Jongjareonrak, A., Benjakul, S., Visessanguan, W. & Tanaka, M. (2008). Antioxidative activity and properties of fish skin gelatin films incorporated with BHT and α-tocopherol. Food Hydrocolloids, 22(3), 449-458. https://doi.org/10.1016/j. foodhyd.2007.01.002
Kean, T. & Thanou, M. (2010). Biodegradation, biodistribution and toxicity of chitosan. Advanced drug delivery reviews, 62(1), 3-11. https://doi.org/10.1016/j.addr.2009.09.004
Liu, F., Qin, B., He, L. & Song, R. (2009). Novel starch/chitosan blending membrane: Antibacterial, permeable and mechanical properties. Carbohydrate Polymers, 78(1), 146-150. https:// doi.org/10.1016/j.carbpol.2009.03.021
Llorens, A., Lloret, E., Picouet, P. A., Trbojevich, R. & Fernandez, A. (2012). Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends in Food Science & Technology, 24(1), 19-29. https://doi.org/10.1016/j. tifs.2011.10.001
Loaiza, M., Chávez G. & Sabino M. (2014). Obtención y modificación química de oligosacáridos de quitosano. Revista latinoamericana de Metalurgia y Materiales, S6, 25-26.
López, Á., Rivas, J., Loaiza, M. & Sabino, M. (2010). Degradación de películas plastificadas de quitosano obtenidas a partir de conchas de camarón (L. vannamei). Revista de la Facultad de Ingeniería Universidad Central de Venezuela, 25(2), 133-143. http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid =S0798-40652010000200014
López-Vázquez, E., Brunner, T. A. & Siegrist, M. (2012). Perceived risks and benefits of nanotechnology applied to the food and packaging sector in México. British Food Journal, 114(2), 197-205. https://doi.org/10.1108/00070701211202386
Maciel, V. B., Yoshida, C. M. & Franco, T. T. (2012). Development of a prototype of a colourimetric temperature indicator for monitoring food quality. Journal of food engineering, 111(1), 21-27. https://doi.org/10.1016/j.jfoodeng.2012.01.037
Maki-Díaz, G., Peña-Valdivia, C. B., García-Nava, R., Arévalo- Galarza, M. L., Calderón-Zavala, G. & Anaya-Rosales, S. (2015). Características físicas y químicas de nopal verdura (Opuntia ficus-indica) para exportación y consumo nacional. Agrociencia, 49(1), 31-51. http://www.scielo.org. mx/pdf/agro/v49n1/ v49n1a3.pdf
Márquez, C. J., Trillos, O., Cartagena, J. R. & Cotes, J. M. (2009). Evaluación fisicoquímica y sensorial de frutos de uchuva (Physalis peruviana L.). Vitae, 16(1), 42-48. http://www.scielo. org.co/pdf/vitae/v16n1/v16n1a05.pdf
May Gutiérrez, M. E. (2015). Desarrollo de un recubrimiento comestible a base de mucílago de nopal (Opuntia spp.)(Doctoral dissertation). Universidad Autónoma de Querétaro. ri.uaq.mx/ handle/123456789/2740
McHugh, T. H. (2000). Protein-Lipid interactions in edible films and coatings. Nahrung, 44: 148-151. DOI: 10.1002/1521-3803 (20000501)44:3<148::AID-FOOD148>3.0.CO;2-P
McMurry, J (2004). Química Orgánica. Ed Cengage learning, México D. F.
Mendoza, M. & Caballero, J. I. M. (2006). Estudio y desarrollo de films a base de zeína de maíz, con distintos tipos de plastificantes. Alimentaria: Revista de tecnología e higiene de los alimentos, (372), 86-87.
Mendoza, B., Gómez, E., Hernández, E., Rodríguez, A. & Chavarría, N. (2014). Elaboración y caracterización de películas biodegradables a partir de mucílago de nopal-caseinato de sodio y mucílago de nopal-pectina. In Ciencias Agropecuarias Handbook T-II: Congreso Interdisciplinario de Cuerpos Académicos (pp. 129-136). ECORFAN.
Meza Velázquez, J. A., Guzmán, G. A., García Díaz, C. L., Fortis, H. M., Preciado Rangel, P. & Esparza Rivera, J. R. (2013). Effect of a film of hidroxypropyl methylcellulose- paraffin in Cantaloupe melon (Cucumis melo) stored in cold. Revista Mexicana de Ciencias Agrícolas, 4(2),259-271. http://www. scielo.org.mx/pdf/remexca/v4n2/v4n2a6.pdf
Miranda, S. P., Cárdenas, G., López, D. & Lara-Sagahon, A. V. (2003). Comportamiento de películas de Quitosán compuesto en un modelo de almacenamiento de aguacate. Revista de la Sociedad Química de México, 47(4), 331-336. http://www.scielo.org. mx/pdf/rsqm/v47n4/v47n4a8.pdf
Monroy-Villagrana, A., Cano-Sarmiento, C., Alamilla-Beltrán, L., Hernández-Sánchez, H. & Gutiérrez-López, G. F. (2014). Coupled taguchi-rsm optimization of the conditions to emulsify α-tocopherol in an Arabic gum-maltodextrin matrix by microfluidization. Revista Mexicana de Ingeniería Química, 13(3), 679-688 http://www.scielo.org.mx/pdf/rmiq/ v13n3/v13n3a3.pdf
Montalvo, C., López-Malo, A. & Palou, E. (2012). Películas comestibles de proteína: características, propiedades y aplicaciones. Temas selectos de ingeniería de alimentos, 6(2), 32-46. http://web. udlap.mx/tsia/files/2013/12/TSIA-62Montalvo-et-al-2012.pdf
Montero-Calderón, M., Rojas-Graü, M. A., Soliva-Fortuny R. & Martín-Belloso, O. (2009). Tendencias en el procesado mínimo de frutas y hortalizas frescas. Internal quality profile and influence of packaging conditions on fresh-cut pineapple, 69(3), 48-51. http://www.horticom.com/revistasonline/extras/ extra09/48_51.pdf
Narsaiah, K., Wilson, R. A., Gokul, K., Mandge, H. M., Jha, S. N., Bhadwal, S., Anurag R.K. Malik R.K. & Vij, S. (2015). Effect of bacteriocin-incorporated alginate coating on shelf-life of minimally processed papaya (Carica papaya L.). Postharvest Biology and Technology, 100, 212-218. https:// doi.org/10.1016/j.postharvbio.2014.10.003
Olivas, G. I. & Barbosa-Cánovas, G. V. (2008). Alginate–calcium films: water vapor permeability and mechanical properties as affected by plasticizer and relative humidity. LWT-Food Science and Technology, 41(2), 359-366. https://doi.org/10.1016/j. lwt.2007.02.015
Ortega-Toro, R., Muñoz, A., Talens, P. & Chiralt, A. (2016). Improvement of properties of glycerol plasticized starch films by blending with a low ratio of polycaprolactone and/ or polyethylene glycol. Food Hydrocolloids, 56, 9-19. https:// doi.org/10.1016/j.foodhyd.2015.11.029
Prasad, P. & Kochhar, A. (2014). Active packaging in food industry: a review. Journal of Environmental Science, Toxicology and Food Technology, 8(5), 1-7. DOI: 10.9790/2402-08530107
Puligundla, P., Jung, J. & Ko, S. (2012). Carbon dioxide sensors for intelligent food packaging applications. Food Control, 25(1), 328-333. https://doi.org/10.1016/j.foodcont.2011.10.043
Ramos-García, M. D. L., Bautista-Baños, S., Barrera-Necha, L. L., Bósquez-Molina, E., Alia-Tejacal, I. & Estrada-Carrillo, M. (2010). Compuestos antimicrobianos adicionados en recubrimientos comestibles para uso en productos hortofrutícolas. Revista mexicana de fitopatología, 28(1), 44-57. http://www.scielo.org.mx/pdf/rmfi/v28n1/v28n1a5.pdf
Rezaei, M. & Motamedzadegan, A. (2015). The Effect of Plasticizers on Mechanical Properties and Water Vapor Permeability of Gelatin- Based Edible Films Containing Clay Nanoparticles. World Journal of Nano Science and Engineering, 5(04), 178. DOI: 10.4236/wjnse.2015.54019
Rhim, J. W. (2004). Physical and mechanical properties of water resistant sodium alginate films. LWT-Food science and technology, 37(3), 323-330. https://doi.org/10.1016/j. lwt.2003.09.008
Rodríguez-Sauceda, R., Rojo-Martínez, G. E., Martínez-Ruiz, R., Piña-Ruiz, H. H., Ramírez-Valverde, B., Vaquera-Huerta, H. & Cong-Hermida, M. D. L. C. (2014). Envases inteligentes para la conservación de alimentos. Ra Ximhai, 10(6), 151-173. http://www.redalyc.org/pdf/461/46132135012.pdf
Rojas-Graü, M., Oms-Oliu, G., Soliva-Fortuny, R. & Martín-Belloso, O. (2009). The use of packaging techniques to maintain freshness in fresh-cut fruits and vegetables: a review. International Journal of Food Science & Technology, 44(5), 875-889. https://doi. org/10.1111/j.1365-2621.2009.01911.x
Rossi-Márquez, G., Han, J.H., García-Almendárez, B., Castaño-Tostado, E. & Regalado-González, C. (2009). Effect of temperature, pH and film thickness on nisin release from antimicrobial whey protein isolate edible films. Journal of the Science of Food and Agriculture, 89(14), 2492-2497. https://doi.org/10.1002/jsfa.3751
Ruiz Avilés, G. (2006). Obtención y caracterización de un polímero biodegradable a partir del almidón de yuca. Ingeniería y ciencia, 2(4). 5-28. http://www.redalyc.org/pdf/835/83520401.pdf
Salinas Salazar, V. M., Trejo Márquez, M. A. & Lira Vargas, A. (2015). Propiedades físicas, mecánicas y de barrera de películas comestibles a base de mucílago de Nopal como alternativa para la aplicación en frutos. Revista Iberoamericana de Tecnología Postcosecha, 16(2), 193-198. http://www.redalyc. org/pdf/813/8134317 6007.pdf
Seol, K. H., Lim, D. G., Jang, A., Jo, C. & Lee, M. (2009). Antimicrobial effect of κ-carrageenan-based edible film containing ovotransferrin in fresh chicken breast stored at 5 C. Meat Science, 83(3), 479-483. DOI: 10.1016/j.meatsci.2009.06.029
Sharma, S. & Rao, T. R. (2015). Xanthan gum based edible coating enriched with cinnamic acid prevents browning and extends the shelf-life of fresh-cut pears. LWT-Food Science and Technology, 62(1), 791-800. https://doi.org/10.1016/j. lwt.2014.11.050
Silva-Weiss, A., Ihl, M., Sobral, P. J. A., Gómez-Guillén, M. C. & Bifani, V. (2013). Natural additives in bioactive edible films and coatings: functionality and applications in foods. Food Engineering Reviews, 5(4), 200-216. https://doi.org/10.1007/ s12393-013-9072-5
Solano, A. C. V. & de Rojas Gante, C. (2012). Two different processes to obtain antimicrobial packaging containing natural oils. Food and Bioprocess Technology, 5(6), 2522-2528. https://doi. org/10.1007/s11947-011-0626-3
Sothornvit, R. & Krochta, J. M. (2000). Plasticizer effect on oxygen permeability of β-lactoglobulin films. Journal of Agricultural and Food Chemistry, 48(12), 6298-6302. DOI: 10.1021/ jf000836l
Tokarev, I., Motornov, M. & Minko, S. (2009). Molecular-engineered stimuli-responsive thin polymer film: a platform for the development of integrated multifunctional intelligent materials. Journal of Materials Chemistry, 19(38), 6932-6948. DOI:10.1039/B906765E
Trejo, V., Aragón, N. & Miranda, P. (2001). Estimación de la permeabilidad al vapor de agua en películas a base de quitosán. Revista de la Sociedad Química de México, 45(1), 01-05. http://www.scielo.org.mx/pdf/rsqm/v45n1/v45n1a1.pdf
Vartiainen, J., Vähä-Nissi, M. & Harlin, A. (2014). Biopolymer films and coatings in packaging applications—a review of recent developments. Materials Sciences and applications, 5(10), 708. DOI: 10.4236/msa.2014.510072
Vázquez-Briones, M. C. & Guerrero-Beltrán, J. A., (2013). Recubrimientos de frutas con biopelículas. Temas Selectos de Ingeniería de Alimentos, 7(2), 5-14. http://web.udlap.mx/ tsia/files/2014/12/TSIA-72-Vazquez-Briones-et-al-2013.pdf
Verma, A. K., Singh, V. P. & Vikas, P. (2012). Application of nanotechnology as a tool in animal products processing and marketing: an overview. American Journal of Food Technology, 7(8), 445-451. DOI: 10.3923/ajft.2012.445.451
Wang, H., Zhang, R., Zhang, H., Jiang, S., Liu, H., Sun, M. & Jiang, S. (2015). Kinetics and functional effectiveness of nisin loaded antimicrobial packaging film based on chitosan/poly (vinyl alcohol). Carbohydrate polymers, 127, 64-71. DOI: 10.1016/j. carbpol.2015.03.058
Weiss, J., Takhistov, P. & McClements, D. J. (2006). Functional materials in food nanotechnology. Journal of Food Science, 71(9),107- 116. https://doi.org/10.1111/j.1750-3841.2006.00195.x
Yang, L. & Paulson, A. T. (2000a). Effects of lipids on mechanical and moisture barrier properties of edible gellan film. Food research international, 33(7), 571-578. https://doi.org/10.1016/ S0963-9969(00)00093-4
Yang, L. & Paulson, A. T. (2000b). Mechanical and water vapour barrier properties of edible gellan films. Food Research International, 33(7), 563-570. https://doi.org/10.1016/S0963- 9969(00)00092-2