2018, Number 6
The effect of a booster dose of HPV tetravalent vaccine after 51 months: implications for extended vaccination schedules
Language: English
References: 26
Page: 666-673
PDF size: 540.08 Kb.
ABSTRACT
Objective. To asses the non-inferiority between two different vaccination schedules one month after the administration of the third dose. Materials and methods. We evaluated the anti-HPV 16/18 antibody titers induced by quadrivalent HPV vaccine administered using two different schedules in girls 9 to 10-year-old girls: a traditional (0-2-6) and an alternative (0-6-50). Blood samples were collected at month 7, 21 and 51. Results. The antibody geometric mean titer ratios one month after the application of the third dose –month 51 for the alternative and month 7 for the traditional– were 1.55 for HPV16 (95%CI, 1.15-2.08) and 1.53 for HPV18 (95%CI, 1.12-2.09). The seropositive rate was above 99% in both groups. Conclusions. The application of an alternative 3-dose schedule in 9 to 10-year-old girls induces a non-inferior immune response compared to the standard one month after the last dose. Further research is needed to understand the minimal number of doses and their timing to provide the best coverage for HPV infection.REFERENCES
Brandon D, Kimmel M, Kuriyakose SO, Kostanyan L, Mesaros N. Antibody persistence and safety and immunogenicity of a second booster dose nine years after a first booster vaccination with a reduced antigen diphtheria-tetanus-acellular pertussis vaccine (Tdap) in adults. Vaccine. 2018;36:6325-33. https://doi.org/10.1016/j.vaccine.2018.08.051
Kadlecek V, Borja-Tabora CF, Eder-Lingelbach S, Gatchalian S, Kiermayr S, Sablan B Jr, et al. Antibody persistence up to 3 years after primary immunization with inactivated Japanese encephalitis vaccine IXIARO in Philippine children and effect of a booster dose. Pediatr Infect Dis J. 2018;37(9):e233-40. https://doi.org/10.1097/INF.0000000000002124
Hernández-Ávila M, Torres-Ibarra L, Stanley M, Salmerón J, Cruz-Valdez A, Muñoz N, et al. Evaluation of the immunogenicity of the quadrivalent HPV vaccine using 2 versus 3 doses at month 21: an epidemiological surveillance mechanism for alternate vaccination schemes. Hum Vaccin Immunother. 2016;12(1):30-8. https://doi.org/10.1080/21645515.2015.1058458
Krajden M, Cook D, Yu A, Chow R, Mei W, McNeil S, et al. Human papillomavirus 16 (HPV 16) and HPV 18 antibody responses measured by pseudovirus neutralization and competitive Luminex assays in a two- versus three-dose HPV vaccine trial. Clin Vaccine Immunol. 2011;18(3):418- 23. https://doi.org/10.1128/CVI.00489-10
Opalka D, Lachman CE, MacMullen SA, Jansen KU, Smith JF, Chirmule N, et al. Simultaneous quantitation of antibodies to neutralizing epitopes on virus-like particles for human papillomavirus types 6, 11, 16, and 18 by a multiplexed Luminex assay. Clin Diagno Lab Immunol. 2003;10(1):108-15. https://doi.org/10.1128/CDLI.10.1.108-115.2003
Dias D, Van Doren J, Schlottmann S, Kelly S, Puchalski D, Ruiz W, et al. Optimization and validation of a multiplexed luminex assay to quantify antibodies to neutralizing epitopes on human papillomaviruses 6, 11, 16, and 18. Clin Diagn Lab Immunol. 2005;12(8):959-69. https://doi.org/10.1128/ CDLI.12.8.959-969.2005
Block SL, Nolan T, Sattler C, Barr E, Giacoletti KE, Marchant CD, et al. Comparison of the immunogenicity and reactogenicity of a prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in male and female adolescents and young adult women. Pediatrics. 2006;118(5):2135-45. https://doi.org/10.1542/peds.2006-0461
Reisinger KS, Block SL, Lazcano-Ponce E, Samakoses R, Esser MT, Erick J, et al. Safety and persistent immunogenicity of a quadrivalent human papillomavirus types 6, 11, 16, 18 L1 virus-like particle vaccine in preadolescents and adolescents: a randomized controlled trial. Pediatr Infect Dis J. 2007;26(3):201-9. https://doi.org/10.1097/01.inf0000253970.29190.5a
Thorsteinsson K, Storgaard M, Katzenstein TL, Ladelund S, Rønsholt FF, Johansen IS, et al. Prevalence and distribution of cervical high-risk human papillomavirus and cytological abnormalities in women living with HIV in Denmark - the SHADE. BMC Cancer. 2016;16(1):866. https://doi. org/10.1186/s12885-016-2881-1
Markowitz LE, Hariri S, Lin C, Dunne EF, Steinau M, McQuillan G, et al. Reduction in human papillomavirus (HPV) prevalence among young women following HPV vaccine introduction in the United States, National Health and Nutrition Examination Surveys, 2003-2010. Infect Dis. 2013;208(3):385-93. https://doi.org/10.1093/infdis/jit192