2018, Number 6
<< Back Next >>
Gac Med Mex 2018; 154 (6)
Péptidos antimicrobianos, una alternativa prometedora para el tratamiento de enfermedades infecciosas
Olascoaga-Del Angel KS, Sánchez-Evangelista G, Carmona-Navarrete I, Galicia-Sánchez MC, Gómez-Luna A, Islas-Arrollo SJ, Castañeda-Sánchez JI
Language: Spanish
References: 72
Page: 681-688
PDF size: 185.11 Kb.
ABSTRACT
Microorganisms that cause diseases in humans are constantly evolving, which represents a challenge in the search for effective
treatments against them. Even when currently there are several pharmacological alternatives available, sometimes they
are inefficient for the control of infectious diseases, especially because pathogens have generated multiple resistance mechanisms
against them. Antimicrobial peptides have been described in many species of organisms, from fungi, plants and insects
to humans; currently, there are molecules that appear as a solution that can be effective in modern therapeutics. The advantage
of these natural peptides lies in that they have been evolving almost the same amount of time than the species that
produce them and their effect on the control of microorganisms is highly significant; some of these molecules are isolated from
living organisms, others are starting to be produced by synthetic methods, which allows having access to an endless number
of peptides with diverse therapeutic activities.
REFERENCES
Jenssen H, Hamill P, Hancock RE. Peptide antimicrobial agents. Clin Microbiol Rev. 2006;19:491-511.
Hirsch JG. Phagocytin: a bactericidal substance from polymorphonuclear leucocytes. J Exp Med. 1956;103 589-611.
Conlon J, Sonnevend A. Antimicrobial peptides in frog skin secretions. Methods Mol Biol. 2010;618:3-14.
Radek K, Gallo, R. Antimicrobial peptides: natural effectors of the innate immune system. Semin Immunopathol. 2007;29:27-43.
Tonarelli G, Simonetta A. Péptidos antimicrobianos de organismos procariotas y eucariotas como agentes terapéuticos y conservantes de alimentos. FABICI. 2013;17:137-177.
Rocha-Ferreira E, Hristova M. Antimicrobial peptides and complement in neonatal hypoxia-ischemia induced brain damage. Front Immunol. 2015;12:6:56.
Braff MH, Bardan A, Nizet V, Gallo RL. Cutaneous defense mechanisms by antimicrobial peptides. J Invest Dermatol. 2005;125:9-13.
Oppenheim J, Biragyn A, Kwak L, Yang D. Roles of antimicrobial peptides such as defensins in innate and adaptive immunity. Ann Rheum Dis. 2003;62:ii17-ii21.
Mastroianni JR, Lu W, Selsted ME, Ouellette AJ. Differential susceptibility of bacteria to mouse Paneth cell α-defensins under anaerobic conditions. Antibiotics (Basel). 2014;3:493-508.
Guilhelmelli F, Viela N, Albuquerque P, Derengowski L, Silva-Pereira I, Kyaw CM. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol. 2013;4:353.
Epand RM, Vogel HJ. Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta. 1999;1462:11-28.
Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 2003;55:27-55.
Gordon YJ, Romanowski EG. A review of antimicrobial peptides and their therapeutic potential as anti-Infective drugs. Curr Eye Res. 2005;30:505‑515.
De Lucca AJ, Walsh TJ. Antifungal peptides: novel therapeutic compounds against emerging pathogens. Antimicrob Agents Chemother. 1999;43:1-11.
Buckheit RW, Watson KM, Morrow KM, Ham AS. Development of topical microbicides to prevent the sexual transmission of HIV. Antiviral Res. 2010;85:142-158.
Rivas L, Luque-Ortega JR, Andreu D. Amphibian antimicrobial peptides and protozoa: lessons from parasites. Biochim Biophys Acta. 2009;1788:1570-1581.
Volzing K, Borrero J, Sadowsky MJ, Kaznessis YN. Antimicrobial peptides targeting Gram-negative pathogens, produced and delivered by lactic acid bacteria. ACS Synth Biol. 2013;2:643-650.
Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta. 2008;1778:357-375.
Kim DH, Lee IH, Nam ST, Hong J, Zhang P, Hwang JS, et al. Neurotropic and neuroprotective activities of the earthworm peptide lumbricusin. Biochem Biophys Res Commun. 2014;448:292-297.
Enoch D, Ludlam HA, Brown NM. Invasive fungal infections: a review of epidemiology and management options. J Med Microbiol. 2006;55:809‑818.
De Luca AJ, Walsh TJ. Antifungal peptides: origin, activity, and therapeutic potential. Rev Iberoam Micol. 2000;17:116-120.
Shai Y. Molecular recognition between membrane-spanning polypeptides. Trends Biochem Sci. 1995;20:460-464.
Rautenbach M, Troskie AM, Vosloo JA. Antifungal peptides: To be or not to be membrane active. Biochimie. 2016;130:132-145.
De Lucca AJ, Walsh TJ. Antifungal peptides: novel therapeutic compounds against emerging pathogens. Antimicrob Agents Chemother. 1999;43:1-11.
Swidergall M, Ernst JF. Interplay between Candida albicans and the antimicrobial peptide armory. Eukaryot Cell. 2014;13:950-957.
Taylor K, Barran PE, Dorin JR. Structure-activity relationships in beta-defensin peptides. Biopolymers. 2008;90:1-7.
Duncan VMS, O’Neil DA. Commercialization of antifungal peptides. Fungal Biol Rev. 2013;26:156-165.
Kang HK, Kim C, Seo CH, Park Y. The therapeutic applications of antimicrobial peptides (AMPs): a patent review. J Microbiol. 2017;55:1-12.
López-Abarrategui C, Alba A, Silva ON, Reyes-Acosta O, Vasconcelos IM, Oliveira JT, et al. Functional characterization of a synthetic hydrophilic antifungal peptide derived from the marine snail Cenchritis muricatus. Biochimie. 2012;94:968-974.
Lee JU, Kang DI, Zhu WL, Shin SY, Hahm KS, Kim Y. Solution structures and biological functions of the antimicrobial peptide, arenicin-1, and its linear derivative. Biopolymers. 2007;88:208-216.
Rossignol T, Kelly B, Dobson C, D’Enfert C. Endocytosis-mediated vacuolar accumulation of the human ApoE apolipoprotein-derived ApoEdpL- W antimicrobial peptide contributes to its antifungal activity in Candida albicans. Antimicrob Agents Chemother. 2011;55:4670-4681.
Kabir ME, Krishnaswamy S, Miyamoto M, Furuichi Y, Komiyama T. An altered camelid-like single domain anti-idiotypic antibody fragment of HM-1 killer toxin: acts as an effective antifungal agent. Appl Microbiol Biotechnol. 2011;90 553-564.
López-García B, Pérez-Payá E, Marcos JF. Identification of novel hexapeptides bioactive against phytopathogenic fungi through screening of a synthetic peptide combinatorial library. Appl Environ Microbiol. 2002; 68:2453-2460.
De Lucca AJ. Antifungal peptides: potential candidates for the treatment of fungal infections. Expert Opin Investig Drugs. 2000;9:273-299.
Hawser S, Borgonovi M, Markus A, Isert D. Mulundocandin, an echinocandin- like lipopeptide antifungal agent: biological activities in vitro. J Antibiot (Tokyo). 1999;52:305-310.
Qureshi A, Thakur N, Tandon H, Kumar M. AVPdb: a database of experimentally validated antiviral peptides targeting medically important viruses. Nucleic Acids Res. 2014;42:D1147-D1153.
Imanishi J, Oku T, Cho Y, Inagawa S, Tanaka A, Kuwayama W. Inhibition of virus multiplication by immunoactive peptides. C R Seances Soc Biol Fil. 1985;179:414-419.
Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389-395.
Fung HB, Guo Y. Enfuvirtide: a fusion inhibitor for the treatment of HIV infection. Clin Ther. 2004;26:352-378.
Wachinger M, Kleinschmidt A, Winder D, Von-Pechmann N, Ludvigsen A, Neumann M, et al. Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J Gen Virol. 1998;79:731-740.
Albiol-Matanic VC, Castilla V, et al. Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. Int J Antimicrob Agents. 2004;23:382-389.
Chernysh S, Kim SI, Bekker G, Pleskach VA, Filatova NA, Anikin VB, et al. Antiviral and antitumor peptides from insects. Proc Natl Acad Sci U S A. 2002;99:12628-12632.
Slocinska M, Marciniak P, Rosinski G. Insects antiviral and anticancer peptides: new leads for the future? Protein Pept Lett. 2008;15 578-585.
Ourth DD. Antiviral activity against human immunodeficiency virus-1 in vitro by myristoylated-peptide from Heliothis virescens. Biochem Biophys Res Commun. 2004;320:190-196.
Elliott G, O’Hare P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell. 1997;88:223-233.
Delcroix M, Riley LW. Cell-penetrating peptides for antiviral drug development. Pharmaceuticals (Basel). 2010;3:448-470.
Arpornsuwan T, Buasakul B, Jaresitthikunchai J, Roytrakul S. Potent and rapid antigonococcal activity of the venom peptide BmKn2 and its derivatives against different Maldi biotype of multidrug-resistant Neisseria gonorrhoeae. Peptides. 2014;53:315-320.
Hirt H, Gorr SU. Antimicrobial peptide GL13K is effective in reducing biofilms of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57:4903-4910.
Volzing K, Borrero J, Sadowsky MJ, Kaznessis YN. Antimicrobial peptides targeting Gram-negative pathogens, produced and delivered by lactic acid bacteria. ACS Synth Biol. 2013;2:643-650.
Brogden NK, Brogden KA. Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents. 2011;38:217-225.
Rivas-Santiago B, Sada E, Hernández-Pando R, Tsutsumi V. Péptidos antimicrobianos en inmunidad innata de enfermedades infecciosas. Salud Publica de Mex. 2006;48:62-71.
Dong H, Lv Y, Zhao D, Barrow P, Zhou X. Defensins: the case for their use against mycobacterial infections. J Immunol Res. 2016;2016:7515687.
Palumbo D, Iannaccone M, Porta A, Capparelli R. Experimental antibacterial therapy with puroindolines, lactoferrin and lysozyme in Listeria monocytogenes-infected mice. Microbes Infect. 2010;12:538-545.
Rodríguez-Franco DA, Vázquez-Moreno L, Ramos-Clamont Montfort G. Actividad antimicrobiana de la lactoferrina: mecanismos y aplicaciones clínicas potenciales. Rev Latinoam Microbiol. 2005;47:102-111.
Liou JW, Hung YJ, Yang CH, Chen YC. The antimicrobial activity of gramicidin A is associated with hydroxyl radical formation. PLoS One. 2015;10:e0117065.
Yaeger RG. Protozoa: Structure, classification, growth, and development. En: Baron S, editor. Medical Microbiology. Cuarta edición. EE.UU.: University of Texas Medical Branch at Galveston; 1996.
Téllez GA, Castaño JC. Péptidos antimicrobianos. Infection. 2010;14:55‑67.
Hancock RE. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis. 2001;1(3):156-164.
Wang Z, Wang G. APD: the antimicrobial peptide database. Nucleic Acids Res. 2004;1 590-592.
Rollins-Smith LA, Conlon JM. Antimicrobial peptide defenses against chytridiomycosis, an emerging infectious disease of amphibian populations. Dev Comp Immunol. 2005;29 589-598.
Cirioni O, Giacometti A, Ghiselli R, Mocchegiani F, Fineo A, Orlando F, et al. Single-dose intraperitoneal magainins improve survival in a gram-negative-pathogen septic shock rat model. Antimicrob Agents Chemother. 2002;46:101-104.
Clark DP, Durell S, Maloy WL, Zasloff M. Ranalexin. A novel antimicrobial peptide from bullfrog (Rana catesbeiana) skin, structurally related to the bacterial antibiotic, polymyxin. J Biol Chem. 1994;269:10849-10855.
Goraya J, Wang Y, Li Z, O’Flaherty M, Knoop FC, Platz JE, et al. Peptides with antimicrobial activity from four different families isolated from the skins of the North American frogs Rana luteiventris, Rana berlandieri and Rana pipiens. Eur J Biochem. 2000;267:894-900.
Conlon JM, Kolodziejek J, Nowotny N. Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochim Biophys Acta. 2004;1696:1-14.
Simmaco M, Mignogna G, Canofeni S, Miele R, Mangoni ML, Barra D. Temporins, antimicrobial peptides from the European red frog Rana temporaria. Eur J Biochem. 1996;242:788-792.
Mor A, Nicolas P. Isolation and structure of novel defensive peptides from frog skin. Eur J Biochem. 1994;219:145-154.
Mor A, Hani K, Nicolas P. The vertebrate peptide antibiotics dermaseptins have overlapping structural features but targets specific microorganisms. J Biol Chem. 1994;269:31635-31641.
Krugliak M, Feder R, Zolotarev VY, Gaidukov L, Dagan A, Ginsburg H, et al. Antimalarial activities of dermaseptin S4 derivatives. Antimicrob Agents Chemother. 2000;44:2442-2451.
Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987;84: 5449-5453.
Wakamatsu K, Takeda A, Tachi T, Matsuzaki K. Dimer structure of magainin 2 bound to phospholipid vesicles. Biopolymers. 2002;64:314‑327.
Verdonck F, Bosteels S, Desmet J, Moerman L, Noppe W, Willems J, et al. A novel class of pore-forming peptides in the venom of Parabuthus schlechteri Purcell (scorpions: buthidae). Cimbebasia. 2000; 16:247-260.
Escobar E, Flores L, Rivera C. Péptidos antibacterianos de los venenos de Hadruroides mauryi y Centruroides margaritatus. Rev Peru Biol. 2008;15:139-142.