2006, Number 2
<< Back Next >>
An Med Asoc Med Hosp ABC 2006; 51 (2)
Genomic comparison in mycoplasmas of medical interest
Rivera-Tapia JA, Cedillo RL, Giono CS
Language: Spanish
References: 38
Page: 74-79
PDF size: 96.29 Kb.
ABSTRACT
The
Mycoplasmataceae family, which belong to the order
Mycoplasmatales under
Mollicutes class, contains the genera
Mycoplasma and
Ureaplasma. It is thought that the
Mollicutes, which possess a notably small genome, may have evolved from a common ancestral Gram-positive bacterium with G + C content like the
Lactobacillus group, including
Bacillus subtilis, by losing a considerable region of the genome. In humans six
Mollicutes (
Mycoplasma genitalium,
Mycoplasma peneumoniae,
Ureaplasma urealyticum,
Mycoplasma hominis,
Mycoplasma penetrans and
Mycoplasma fermentans) are associated with diseases characterized by high morbidity and low mortality; infections can be systemic in neonates and in immunocompromised patients. Because
Mollicutes represent a phylogenetically coherent group comprised of pathogens, colonizing a broad range of different hosts and body sites, they offer, an ideal set of model organisms for comparative genomic studies. The objective of the work is to present the comparative genomic among four
Mollicutes involved with several human diseases.
REFERENCES
Razin S, Yogev D, Naot Y. Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev 1998; 62: 1094-1056.
Rocha EPC, Blanchard A. Genomic repeats, genome plasticity and the dynamics of mycoplasma evolution. Nucleic Acids Res 2002; 30: 2031-2042.
Rottem S. Interaction of mycoplasmas with host cells. Physiol Rev 2003; 83: 417-432.
Jaffe JD, Stange-Thomann N, Smith C, DeCarpio D, Fisher S, Butler J, Calvo S et al. The complete genome and proteome of Mycoplasma mobile. Genome Res 2004; 14: 1447-1461.
Barré A, de Daruvar A, Blanchard A. MolliGen, a database dedicated to the comparative genomics of Mollicutes. Nucleic Acids Res 2004; 32: 307-310.
Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ et al. The minimal gene complement of Mycoplasma genitalium. Science 1995; 270: 397-403.
Glass JI, Lefkowitz EJ, Glass JS, Heiner CR, Chen EY, Cassell GH. The complete sequence of the mucosal pathogen Ureaplasma urealyticum. Nature 2000; 407: 757-762.
Himmelreich R, Hilbert H, Plagens H, Pirkl E, Li BC, Herrmann R. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res 1996; 24: 4420-4449.
Sasaki Y, Ishikawa J, Yamashita A, Oshima K, Kenri T, Furuya K, Yoshino C et al. The complete genomic sequence of Mycoplasma penetrans, an intracellular bacterial pathogen in humans. Nucleic Acids Res 2002; 30: 5293-5300.
Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science 1997; 278: 631-637.
Tatusov RL, Federova ND, Jackson JD. The COG database: an update version includes eukaryotes. BMC Bioinformatics 2003; 4: 41.
Rivera-Tapia JA. Variación antigénica en micoplasmas. Gac Med Mex 2002; 138: 289-290.
Roske K, Blanchrad A, Chambaud I. Phase variation among major surface antigens of Mycoplasma penetrans. Infect Immun 2001; 69: 7642-7651.
Rosengarten R, Citti C, Glew M. Host-pathogen interactions in mycoplasma pathogenesis: Virulence and survival strategies of minimalist prokaryotes. Int J Med Microbiol 2000; 290: 15-25.
Rosengarten R, Wise KS. Phenotypic switching in mycoplasmas: phase variation of diverse surface lipoproteins. Science 1990; 247: 315-318.
Bhugra B, Voelker LL, Zou N. Mechanism of antigenic variation in Mycoplasma pulmonis: Interwoven, site-specific DNA inversions. Mol Microbiol 1995; 18: 703-714.
Glew MD, Browning GF, Markman PF. pMGA phenotypic variation in Mycoplasma gallisepticum ocurrs in vivo and is mediated by trinucleotide repeat length variation. Infect Immun 2000; 68: 6027-6033.
Noormohammadi AH, Markham PF, Kanci A. A novel mechanism for control of antigenic variation in the haemagglutinin gene family of Mycoplasma synoviae. Mol Microbiol 2000; 35: 9119-9123.
Theiss P, Wise KS. Localized frameshift mutation generates selective, high-frequency phase variation of a surface lipoproteins encoded by a mycoplasma ABC transporter operon. J Bacteriol 1997; 179: 4013-4022.
Henderson IR, Owen P, Nataro JP. Molecular switches the ON and OFF of bacterial phase variation. Mol Microbiol 1999; 33: 919-932.
Rivera-Tapia JA. La importancia de la heterogeneidad fenotípica en micoplasmas. SIIC- 2004, (www.siicsalud.com/des/des037/04416000.htm).
Zhang Q, Wise KS. Coupled phase-variable expression and epitope masking of selective surface lipoproteins increase surface phenotypic diversity in Mycoplasma hominis. Infect Immun 2001; 69: 5177-5181.
Kenri T, Taniguchi R, Sasaid Y. Identification of a new variable sequence in the P1 cytadhesin gene of Mycoplasma pneumoniae: evidence for the generation of antigenic variation by DNA recombination between repetitive sequences. Infect Immun 1999; 67: 4557-4562.
Horino A, Sasaki Y, Sasaki T. Multiple promoter inversion generate surface antigenic variation in Mycoplasma penetrans. J Bacteriol 2003; 158: 231-242.
Dawson MS, Hayes MM, Wang RYH. Detection and isolation of Mycoplasma fermentans from urine of HIV-1 infected patients. Arch Pathol Lab Med 1993; 117: 511-514.
Lo SC, Tsai S, Benis JR. Enhancement of HIV-1 cytocidal effects in CD+4 lymphocytes by the AIDS-associated Mycoplasmas. Nature 1991; 251: 1074-1076.
Saillard C, Carle P, Bové JM. Genetic and serologic relatedness between Mycoplasma fermentans strain and a mycoplasma recently identified in tissue of AIDS and non-AIDS patients. Res Virol 1990; 141: 385-395.
Stadtlander CT, Zuhua C, Watson HL. Protein and antigen heterogeneity among strains of Mycoplasma fermentans. Infect Immun 1991; 59: 3319-3322.
Baseman JB, Tully JG. Mycoplasmas: sophisticated, reemerging and burdened by their notoriety. Emerg Infect Immun 1999; 67: 4456-4462.
Krause DC. Mycoplasma pneumoniae cytadherence: Unravelling the tie that binds. Mol Microbiol 1996; 20: 247-253.
Willby MJ, Krause DC. Characterization of a Mycoplasma pneumoniae hmw3 mutant: implications for attachment organelle assembly. J Bacteriol 2002; 184: 3061-3068.
Stadtlander CT, Watson HL, Simecka JW. Cytopathogenicity of Mycoplasma fermentans (including strian incognitus). Clin Infect Dis 1993; 17: S289-301.
Taylor-Robinson D, Davies HA, Sarathchandra P. Intracellular location of mycoplasmas in cultured cells demonstrated by immunocytochemistry and electron microscopy. Int J Exp Pathol 1991; 72: 705-714.
Franzoso G, Dimitrov DS, Blumenthal R. Fusion of Mycoplasma fermentans, strain incognitus, with T lymphocytes. FEBS Lett 1992; 303: 251-254.
Dimitrov DS, Franzoso G, Salman M. Mycoplasma fermentans , incognitus strain, cells are able to fuse with T-lymphocytes. Clin Infect Dis 1993; 17: S305-308.
Pollack JD, Williams MV, McElhaney RN. The comparative metabolism of the mollicutes (mycoplasmas): the utility for taxonomic classification and the relationship of putative gene annotation and phylogeny to enzymatic function. Crit Rev Microbiol 1997; 23: 269-354.
Rottem S, Barile MF. Beware of mycoplasmas. Trends Biotechnol 1993; 11: 17-24.
Ben-Menachem G, Mousa A, Brenner T. Choline-deficiency induced by Mycoplasma fermentans enhances apoptosis of rat astrocytes. FEMS Microbiol Lett 2001; 201: 157-162.