2018, Number 5
<< Back Next >>
Rev Mex Urol 2018; 78 (5)
Response of the pelvic floor musculature to transcutaneous electrical stimulation of the pudendal nerve during biofeedback for urge incontinence
Pérez-Martínez C, Martínez-Gómez M, Cruz-Gómez Y, Vargas-Díaz IB
Language: Spanish
References: 43
Page: 359-365
PDF size: 334.96 Kb.
ABSTRACT
Background: Urge incontinence is a highly prevalent condition and is reported at 60%
in Mexico. It causes different degrees of incapacity in relation to daily life. Treatment
includes behavioral therapy and neuromodulation.
Objective: To evaluate the response of the pelvic floor musculature during biofeedback
assisted by transcutaneous electrical stimulation of the pudendal nerve in patients with
urge incontinence.
Materials and Methods: A non-experimental, longitudinal, observational clinical
study was conducted on patients with urge incontinence that received behavioral
treatment with biofeedback assisted by transcutaneous electrical stimulation of the
pudendal nerve. Patient age, progression, and bladder diary parameters were recorded.
Perineometry was recorded in the resting state and in voluntary pelvic floor musculature
using the Andromeda
® urodynamic equipment with a transrectal transducer and
transcutaneous electrical stimulation of the pudendal nerve was carried out using the
Staodyn
® EMS+2 neuromuscular stimulator. The data were analyzed utilizing the SPSS
10.1 program (95% CI and Student’s t test).
Results: Fourteen patients were included in the study and their mean age was 59.8 ±
11.80 years. During the first session, the mean perineometric value in the resting state
was 1.21 ± 0.42 cmH
20, in voluntary contraction it was 13.64 ± 7.09 cmH
20, and
during transcutaneous electrical stimulation of the pudendal nerve it was 46.42 ± 7.14
cmH20 (p‹0.05). No adverse effects were reported.
Conclusions: The intense contraction of the pelvic floor musculature (50 cmH
2O)
caused by transcutaneous electrical stimulation of the pudendal nerve during biofeedback
signifies that said neuromodulation technique is effective, easy to use, and highly
reproducible in patients with urge incontinence.
REFERENCES
Abrams P, Cardozo L, Fall M, et al. The standardization of terminology in lower urinary tract function: Report from the standardization sub-committee of the International Continence Society. Neurourol Urodyn 2002;21:167-178.
Coyne KS, et al. Economic Burden of Urgency Urinary Incontinence. J Manag Care Pharm. 2014;20(2):130-140. DOI: 10.18553/jmcp.2014.20.2.130
Dooley Y, et al. Urinary incontinence prevalence: results from the National Health and Nutrition Examination Survey. J Urol. 2008;179(February):656-661. DOI:10.1016/j. juro.2007.09.081.
Coyne KS, et al. An overactive bladder symptom and healthrelated quality of life short-form: validation of the OAB-q SF. Neurourol Urodyn 2015;34:255-263. DOI: 10.1002/ nau.22559
Milsom I, et al. Committee 1. Epidemiology of Urinary Incontinence (UI) and other Lower Urinary Tract Symptoms (LUTS), Pelvic Organ Prolapse (POP) and Anal Incontinence (AI). In: Abrams P, et al, editors. International Consultation on Incontinence, Tokyo, September 2016. 6th ed. London, UK; 2017:1-92.
Barrantes-Monge M, et al. Dependencia funcional y enfermedades crónicas en ancianos mexicanos. Salud Publica Mex. 2007;49(Supl. 4):S459-S466. Dirección URL: .
Haylen BT, et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic floor dysfunction. Neurourol Urodyn 2010;29(1):4-20. DOI:10.1002/ nau.20798.
Fowler CJ, et al. The neural control of micturition. Nat Rev Neurosci 2008;9(6):453-466. DOI:10.1038/nrn2401.
Coyne KS, et al. The prevalence of lower urinary tract symptoms (LUTS) and overactive bladder (OAB) by racial/ethnic group and age: results from OAB-POLL. Neurourol Urodyn 2013;32(3):230-237. DOI:10.1002/nau.22295.
Cruz Y, et al. Neural and Endocrine Factors Contribute to the Comorbidity of Urinary and Sexual Dysfunctions. Curr Sex Heal Reports 2017;9(4):251-261.
Takahashi R, et al. Hyperexcitability of bladder afferent neurons associated with reduction of Kv1.4 a-subunit in rats with spinal cord injury. J Urol 2013;190(6):2296-2304. DOI:10.1016/j.juro.2013.07.058.
Palacios JL, et al. Neuroanatomic and behavioral correlates of urinary dysfunction induced by vaginal distension in rats. Am J Physiol Ren Physiol 2016;310(10):F1065-F1073. doi:10.1152/ajprenal.00417.2015.
Cuerva-González MJ, et al. Incontinencia urinaria y fecal posparto en embarazo gemelar. Ginecol Obstet Mex 2011;79(9):540-546.
Rickenbacher E, et al. Impact of overactive bladder on the brain: Central sequelae of a visceral pathology. Proc Natl Acad Sci USA 2008;105(30):10589-94. DOI: 10.1073/ pnas.0800969105.
De Groat WC, et al. Neural control of the lower urinary tract. Compr Physiol 2015;5:327-396. DOI:10.1002/cphy.c130015.
Munoz A, et al. Lumbosacral sensory neuronal activity is enhanced by activation of urothelial purinergic receptors. Brain Res Bull 2011;86(5-6):380-384. DOI:10.1016/j.brainresbull. 2011.09.001.
Sugaya K, et al. Central nervous control of micturition and urine storage. J Smooth Muscle Res. 2005;41(3):117-132. DOI:10.1540/jsmr.41.117.
Kanai A, Andersson KE. Bladder afferent signaling: recent findings. J Urol 2010;183(4):1288-1295. DOI:10.1016/j. juro.2009.12.060.
Yosimura N, et al. Central nervous targets for the treatment of bladder dysfunction. Neurourol Urodyn. 2014;33:59-66. doi:10.1002/nau.22455
Yoshimura N, et al. Histological and electrical properties of rat dorsal root ganglion neurons innervating the lower urinary tract. J Neurosci. 2003;23(10):4355-4361.
Boone TB, et al. Enhanced production of nitric oxide may contribute to the induction of detrusor underactivity in sucrose fed rats. Bladder 2015;2(2):1-6. DOI:10.14440/ bladder.2015.50.
Thüroff JW, et al. EAU guidelines on urinary incontinence. Eur Urol 2011;59:387-400. doi:10.1016/j.eururo. 2010.11.021.
Gormley EA, et al. Diagnosis and treatment of overactive bladder (non-neurogenic) in adults: AUA/SUFU guideline amendment. J Urol 2015;193(5):1572-1580. DOI:10.1016/j. juro.2015.01.087.
Norton JM, et al. Nonbiologic factors that impact management in women with urinary incontinence: review of the literature and findings from a National Institute of Diabetes and Digestive and Kidney Diseases workshop. Int Urogynecol J 2017;28:1295-1307. DOI:10.1007/s00192-017-3400-x.
Mayer R. Neuromodulation--who, what, when, where and why? J Urol. 2010;183(1):17-18. DOI:10.1016/j. juro.2009.10.053.
Rardin CR. Biofeedback and Pelvic Floor Physiotherapy : Introducing Non-Surgical Treatments to Your Office. In: Culligan PJ, Goldberg RP, eds. Urogynecology in Primary Care. London: Springer; 2007:73-74.
Wilson PD, Herbison GP. A Randomized controlled trial of pelvic floor muscle exercise to treat postnatal urinary incontinence. Int Urogynecol J 1998;9:257-264.
Giraudet G, et al. Three dimensional model of the female perineum and pelvic fl oor muscles. Eur J Obstet Gynecol. 2018;226:1-6. DOI:10.1016/j.ejogrb.2018.05.011.
Corona-Quintanilla DL, et al. Temporal coordination of pelvic and perineal striated muscle activity during micturition in female rabbits. J Urol 2009;181(3):1452-1458. doi:10.1016/j.juro.2008.10.103.
Wallner C, et al. The anatomical components of urinary continence. Eur Urol 2009;55(4):932-943. DOI:10.1016/j. eururo.2008.08.032.
Wallner C, et al. The contribution of the levator ani nerve and the pudendal nerve to the innervation of the levator ani muscles; a study in human fetuses. Eur Urol 2008;54(5):1136-1144. DOI:10.1016/j.eururo.2007.11.015.
Preyer O, et al. Percutaneous tibial nerve stimulation versus tolterodine for overactive bladder in women: a randomised controlled trial. Eur J Obstet Gynecol Reprod Biol 2015;191:51-56. doi:10.1016/j.ejogrb.2015.05.014.
McGee MJ, Grill WM. Modeling the spinal pudendo-vesical reflex for bladder control by pudendal afferent stimulation. J Comput Neurosci 2016;40(3):283-296. doi:10.1007/ s10827-016-0597-5.
Mørkved S, et al. Pelvic floor muscle strength and thickness in continent and incontinent nulliparous pregnant women. Int Urogynecol J. 2004;15:384-390. DOI:10.1007/s00192- 004-1194-0.
Pérez-Martinez C, Vargas-Díaz I. Utilidad de la perineometría para evaluar la incontinencia urinaria de esfuerzo. Rev Mex Urol 2010;70(1):2-5.
Gormley EA, et al. Diagnosis and treatment of overactive bladder (non-neurogenic) in adults: AUA/SUFU guideline. J Urol 2012;188(6 Suppl):2455-2463. doi:10.1016/j. juro.2012.09.079.
Wibisono E, Rahardjo HE. Effectiveness of short term percutaneous tibial nerve stimulation for non-neurogenic overactive bladder syndrome in adults: a meta-analysis. Acta Med Indones 2015;32:188-200.
Peters KM, et al. Randomized trial of percutaneous tibial nerve stimulation versus extended-release tolterodine: results from the overactive bladder innovative therapy trial. J Urol. 2009;182(3):1055-1061. DOI:10.1016/j.juro.2009.05.045.
Gungor U, et al. Comparison of the effects of electrical stimulation and posterior tibial nerve stimulation in the treatment of overactive. Gynecol Obstet Investig. 2013;75:46-52. DOI:10.1159/000343756.
Pacheco P, et al. Somato-motor components of the pelvic and pudendal nerves of the female rat. Brain Res 1989;490(1):85-94.
Plochocki JH, et al. Functional and clinical reinterpretation of human perineal neuromuscular anatomy : application to sexual function and continence. Clin Anat 2016;29:1053- 1058. DOI:10.1002/ca.22774.
Surwit EA, et al. Neuromodulation of the pudendal, hypogastric, and tibial nerves with pelvic floor muscle rehabilitation. Neuromodulation. 2009;12(3):175-179. DOI: 10.1111/j.1525-1403.2009.0012.x
Gad PN, et al. Neuromodulation of the neural circuits controlling the lower urinary tract. Exp Neurol. 2016;285:182-189. DOI:10.1016/j.expneurol.2016.06.034.