2018, Number 3
<< Back Next >>
Rev Mex Patol Clin Med Lab 2018; 65 (3)
Evaluation of a multiplex PCR test for the identification of bacterial and fungal DNA in the diagnosis of neonatal sepsis
Sánchez HJL, Parra OI, Hernández SC, Pichardo VL, Cruz LA, Villanueva GD, López MB, Villa GM
Language: Spanish
References: 26
Page: 167-174
PDF size: 514.31 Kb.
ABSTRACT
Introduction: Sepsis is one of the causes of child mortality in the world, with 7.5 million reported annually. Within the clinical and laboratory approach, rapid and accurate tests are necessary. Molecular biology tests are an available option but have to be evaluated. Quality management systems and continuous improvement processes lead us to generate objective evidence in decision making and for this reason we recommend the analytical verification of a qualitative method to demonstrate the manufacturer’s analytical specifications.
Objective: To evaluate the analytical performance of a multiplex PCR real-time LightCycler
® SeptiFast Test M
grade.
Material and methods: Prospective and descriptive study carried out at the Hospital Infantil de México Federico Gómez (HIMFG), from June 2015 to June 2017. From the analytical platform LightCycler
® SeptiFast Test M
grade.
Results: The standardization process of the LightCycler
® SeptiFast Test M
grade was carried out in accordance with the manufacturer’s instructions. The test has several levels of control, which must be included in each experiment. The internal control (IC) are synthetic DNA molecules that are added in defined volume to the samples, and must be positive, while the negative control (NC) must be negative. The reactive controls (CR), G+, G- and fungi bacteria must be positive. In the standardization phase, 13 experiments were performed and despite recognizing the microorganisms added (ATCC strains), it invalidate the test because in reactive controls, it does not detect amplified G+ and/or G- bacteria, while the fungi did amplify. However for a test to be analytically valid all reactive controls must amplify.
Conclusions: In spite of being an in vitro diagnostic (IVD) test, under the conditions of infrastructure, equipment and work, it was not possible to standardize and verify the LightCycler
® SeptiFast Test M
grade test in the HIMFG, even after 13 experiments according to the instructions and in the presence of the manufacturer’s advisors who verified the strict follow-up of these. Therefore, we concluded that, even following the manufacturer’s recommendations, it did not turn out to be a reliable and clinically useful test.
REFERENCES
Naciones Unidas. Objetivos de Desarrollo del Milenio. Informe de 2015. Nueva York: Naciones Unidas; 2015. Disponible en: http://www.un.org/es/millenniumgoals/pdf/2015/mdg-report-2015_spanish
López MI, Callao MP, Ruisánchez I. A tutorial on the validation of qualitative methods: from the univariate to the multivariate approach. Anal Chim Acta. 2015; 891: 62-72.
Darmstadt GL, Bhutta ZA, Cousens S, Adam T, Walker N, de Bernis L et al. Evidence-based, cost-effective interventions: how many newborn babies can we save? Lancet. 2005; 365 (9463): 977-988.
Liu L, Johnson HL, Cousens S, Perin J, Scott S, Lawn JE et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet. 2012; 379 (9832): 2151-2161.
Lawn JE, Cousens S, Zupan J; Lancet Neonatal Survival Steering Team. 4 million neonatal deaths: when? Where? Why? Lancet. 2005; 365 (9462): 891-900.
Flores-Herrera H, Maida-Claros R, Solís-Herrera H, Illescas-Medrano E, Zavala-Díaz de la Serna FJ. Identificación molecular de bacterias causales de sepsis neonatal mediante la reacción en cadena de la polimerasa (PCR). Acta Pediatr Mex. 2009; 30 (3): 148-155.
Ramírez-Sandoval MLP, Macías-Parra M, Lazcano-Ramírez F. Etiología de la sepsis neonatal en una unidad hospitalaria de segundo nivel. Salud pública Méx. 2007; 49 (6): 391-393.
Camacho-Gonzalez A, Spearman PW, Stoll BJ. Neonatal infectious diseases: evaluation of neonatal sepsis. Pediatr Clin North Am. 2013; 60 (2): 367-389.
Vergnano S, Sharland M, Kazembe P, Mwansambo C, Heath PT. Neonatal sepsis: an international perspective. Arch Dis Child Fetal Neonatal Ed. 2005; 90 (3): F220-F224.
Goldstein B, Giroir B, Randolph A; International Consensus Conference on Pediatric Sepsis. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005; 6 (1): 2-8.
Fischer JE, Bachmann LM, Jaeschke R. A readers’ guide to the interpretation of diagnostic test properties: clinical example of sepsis. Intensive Care Med. 2003; 29 (7): 1043-1051.
Wellinghausen N, Wirths B, Franz AR, Karolyi L, Marre R, Reischl U. Algorithm for the identification of bacterial pathogens in positive blood cultures by real-time LightCycler polymerase chain reaction (PCR) with sequence-specific probes. Diagn Microbiol Infect Dis. 2004; 48 (4): 229-241.
Chiesa C, Panero A, Osborn JF, Simonetti AF, Pacifico L. Diagnosis of neonatal sepsis: a clinical and laboratory challenge. Clin Chem. 2004; 50 (2): 279-287.
Klausegger A, Hell M, Berger A, Zinober K, Baier S, Jones N et al. Gram type-specific broad-range PCR amplification for rapid detection of 62 pathogenic bacteria. J Clin Microbiol. 1999; 37 (2): 464-466.
CLSI. User Protocol for Evaluation of Qualitative Test Performance; Approved Guideline—Second Edition. CLSI document EP12-A2. Wayne, PA: Clinical and Laboratory Standards Institute; 2008.
Ruppenthal RD, Souza Pereira F, Cantarelli VV, SilveiraSchrank I. Application of broad-range bacterial PCR amplification and direct sequencing on the diagnosis of neonatal sepsis. Braz J Microbiol. 2005; 36 (1): 29-35.
Srinivasan L, Harris MC. New technologies for the rapid diagnosis of neonatal sepsis. Curr Opin Pediatr. 2012; 24 (2): 165-171.
Tschiedel E, Steinmann J, Buer J, Onnebrink JG, Felderhoff-Müser U, Rath PM et al. Results and relevance of molecular detection of pathogens by SeptiFast--a retrospective analysis in 75 critically ill children. Klin Padiatr. 2012; 224 (1): 12-16.
Lucignano B, Ranno S, Liesenfeld O, Pizzorno B, Putignani L, Bernaschi P et al. Multiplex PCR allows rapid and accurate diagnosis of bloodstream infections in newborns and children with suspected sepsis. J Clin Microbiol. 2011; 49 (6): 2252-2258.
Jordan JA, Durso MB. Real-time polymerase chain reaction for detecting bacterial DNA directly from blood of neonates being evaluated for sepsis. J Mol Diagn. 2005; 7 (5): 575-581.
Chang SS, Hsieh WH, Liu TS, Lee SH, Wang CH, Chou HC et al. Multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis - a systemic review and meta-analysis. PLoS One. 2013; 8 (5): e62323.
Hernández-Huerta FE, Ruíz-Bedolla E, Cruz-López A, Vilchis-Ordoñez A, Gutiérrez-Almanza Z, López-Martínez B et al. Desempeño analítico de dos plataformas automatizadas para química clínica en un Instituto de Salud Pediátrica. Rev Latinoamer Patol Clin. 2017; 64 (1): 14-26.
Pammi M, Flores A, Leeflang M, Versalovic J. Molecular assays in the diagnosis of neonatal sepsis: a systematic review and meta-analysis. Pediatrics. 2011; 128 (4): e973-e985.
Hernández-Huerta F, Ruiz-Bedolla E, Cruz-López A, Vilchis-Ordoñez A, Almanza-Gutiérrez Z, López-Martínez B et al. Evaluación de plataformas de química clínica mediante la comparación de los resultados de muestras biológicas. Rev Latinoamer Patol Clin. 2017; 64 (4): 169-180.
Clinical and Laboratory Standards Institute (CLSI). Principles and procedures for blood cultures; approved guideline. CLSI document M47-A. Wayne, PA: Clinical and Laboratory Standards Institute; 2007.
Pammi M, Flores A, Versalovic J, Leeflang MM. Molecular assays for the diagnosis of sepsis in neonates. Cochrane Database Syst Rev. 2017; 2: CD011926.