2018, Number 3
<< Back Next >>
Acta Med 2018; 16 (3)
Pharmacoeconomics of sugammadex for the reversal of neuromuscular relaxation under general anaesthesia at Ángeles Pedregal Hospital
Vázquez MCA, Alarcón RJJ, Linares NF
Language: Spanish
References: 41
Page: 209-218
PDF size: 380.86 Kb.
ABSTRACT
Neuromuscular blockers facilitate endotracheal intubation, invasive airway management and transoperative relaxation. Residual neuromuscular blockade is a frequent problem and little detected in the Post-Anesthesia Care Unit. The train of four is a useful method of neuromuscular monitoring. The objective of the study was to perform an economic evaluation of sugammadex versus neostigmine/atropine.
Material and methods: Observational, prospective study in patients with elective laparoscopic surgery under general anesthesia with rocuronium. Performing neuromuscular reversal in moderate block (TOF ‹ 0.9). Group 1 (n = 30) sugammadex at 2 mg/kg, group 2 (n = 30) neostigmine at 0.04 mg/kg and atropine at 0.15 mg/kg.
Results: Sugammadex took 1.4 minutes to reach TOFr › 90% and neostigmine 15.42 minutes (p = 0.00), finding time savings in the operating room of 14.01 minutes. In PACU, sugammadex presented average stay time of 52.03 minutes and neostigmine of 68.90 minutes, saving 16.87 minutes (p = 0.0002). The cost savings per fraction of time in the operating room was $ 1,343.5 pesos and in PACU of $ 2,760.50 pesos.
Conclusions: Sugammadex presents a significant difference in the time saved in the operating room, but not in the cost. Its use in the operating room allows savings in time of stay and cost to discharge from the PACU, compensating the cost of the medication.
REFERENCES
Carrillo ER. Clínica de relajantes musculares 2. Clínicas mexicanas de anestesiología, 16. Editorial Alfil. 2012.
Debaene B, Plaud B, Dilly MP, Donati F. Residual paralysis in the PACU after a single intubating dose of nondepolarizing muscle relaxant with an intermediate duration of action. Anesthesiology. 2003; 98 (5): 1042-1048.
Brull SJ, Murphy GS. Residual neuromuscular block: lessons unlearned. Part II: methods to reduce the risk of residual weakness. Anesth Analg. 2010; 111 (1): 129-140.
Macario A, Vitez TS, Dunn B, McDonald T. Where are the cost in perioperative care? Analysis of hospital costs and charges for inpatient surgical care. Anesthesiology. 1995; 83 (6): 1138-1144.
Macario A. What does one minute of operating room time cost? J Clin Anesth. 2010; 22 (4): 233-236.
Hawkes C, Miller D, Martineau R, Hull K, Hopkins H, Tierney M. Evaluation of cost minimization strategies of anaesthetic drugs in a tertiaty care hospital. Can J Anaesth. 1994; 41 (10), 894-901.
Arbous MS, Grobbee DE, van Kleef JW, de Lange JJ, Spoormans HH, Touw P et al. Mortality associated with anaesthesia: a qualitative analysis to identify risk factors. Anaesthesia. 2001; 56 (12): 1141-1153.
Naguib M, Kopman AF, Ensor JE. Neuromuscular monitoring and postoperative residual curarization: a meta-analysis. Br J Anaesth. 2007; 98 (3): 302-316.
Insinga RP, Joyal C, Goyette A, Galarneau A. A discrete event simulation model of clinical and operating room efficiency outcomes of sugammadex versus neostigmine for neuromuscular block reversal in Canada. BMC Anesthesiology. 2016; 16 (1): 114.
Fabregat LJ, Candia CA, Castillo MC. La monitorización neuromuscular y su importancia en el uso de los bloqueantes neuromusculares. Revista Colombiana de Anestesiología. 2012; 40 (4): 293-303.
Fields AM, Vadivelu N. Sugammadex: a novel neuromuscular blocker binding agent. Curr Opin Anaesthesiol. 2007; 20 (4): 307-310.
Paton F, Paulden M, Chambers D, Heirs M, Duffy S, Hunter JM et al. Sugammadex compare with neostigmine/glycopyrrolate for routine reversal of neuromuscular block: a systematic review and economic evaluation. Br J Anaesth. 2010; 105 (5): 558-567.
Drummond MF, Sculpher MJ, Torrance GW, O’Brien BJ, Stoddart GL. Methods for the economic evaluation of health care programmes. Third edition. Oxford: Oxford University Press. 2005.
Fuchs-Buder T, Claudius C, Skovgaard LT, Eriksson LI, Mirakhur RK, Viby-Mogensen J et al. Good clinical research practice in pharmacodynamic studies of neuromuscular blocking agents II: the Stockholm revision. Acta Anaesthesiol Scand. 2007; 51 (7): 789-808.
Sanfilippo M, Alessandri F, Wefki Abdelgawwad Shousha AA, Sabba A, Cutolo A. Sugammadex and ideal body weight in bariatric surgery. Anesthesiol Res Practice. 2013; 2013: 389782.
Kantor GS, Chung F. Anaesthesia drug cost, control and utilization in Canada. Can J Anaesth. 1996; 43 (1): 9-16.
Orkin FK. Moving toward value-based anesthesia care. J Clin Anesth. 1993; 5 (2): 91-98.
Murphy GS, Szokol JW, Marymont JH, Greenberg SB, Avram MJ, Vender JS et al. Intraoperative acceleromyographic monitoring reduces the risk of residual neuromuscular blockade and adverse respiratory events in the Postanesthesia Care Unit. Anesthesiology. 2008; 109 (3): 389-398.
Eikermann M, Groeben H, Hüsing J, Peters J. Accelerometry of adductor pollicis muscle predicts recovery of respiratory function from neuromuscular blockade. Anesthesiology. 2003; 98 (6): 1333-1337.
Waud BE, Waud DR. The relation between tetanic fade and receptor occlusion in the presence of competitive neuromuscular block. Anesthesiology. 1971; 35 (5): 456-464.
Eikermann M, Gerwig M, Hasselmann C, Fiedler G, Peters J. Impaired neuromuscular transmission after recovery of the train-of-four ratio. Acta Anaesthesiol Scand. 2007; 51 (2): 226-234.
Sundman E, Witt H, Olsson R, Ekberg O, Kuylenstierna R, Eriksson LI. The incidence and mechanisms of pharyngeal and upper esophageal dysfunction in partially paralyzed humans: Pharyngeal videoradiography and simultaneous manometry after atracurium. Anesthesiology. 2000; 92 (4): 977-984.
Eikermann M, Blobner M, Groeben H, Rex C, Grote T, Neuhäuser M et al. Postoperative upper airway obstruction after recovery of the train of four ratio of the adductor pollicis muscle from neuromuscular blockade. Anesth Analg. 2006; 102 (3): 937-942.
Norton M, Xará D, Parente D, Barbosa M, Abelha FJ. Residual neuromuscular block as a risk factor for critical respiratory events in the Post Anesthesia Care Unit. Rev Esp Anestesiol Reanim. 2013; 60 (4): 190-196.
Hayes AH, Mirakhur RK, Breslin DS, Reid JE, McCourt KC. Postoperative residual block after intermediate-acting neuromuscular blocking drugs. Anaesthesia. 2001; 56 (4): 312-318.
Yağan Ö, Taş N, Mutlu T, Hancı V. Comparison of the effects of sugammadex and neostigmine on postoperative nausea and vomiting. Braz J Anestesiol. 2017; 67 (2): 147-152.
Sacan O, White PF, Tufanogullari B, Klein K. Sugammadex reversal of rocuronium-induced neuromuscular blockade: a comparison with neostigmine-glycopyrrolate and edrophonium-atropine. Anesth Analg. 2007; 104 (3): 569-574.
Hazizaj A, Hatija A. Bronchospasm caused by neostigmine. Eur J Anaesthesiol. 2006; 23 (1): 85-86.
Bjerke RJ, Mangione MP. Asystole after intravenous neostigmine in a heart transplant recipient. Can J Anaesth. 2001; 48 (3): 305-307.
Eikermann M, Fassbender P, Malhotra A, Takahashi M, Kubo S, Jordan AS, Gautam S et al. Unwarranted administration of acetylcholinesterase inhibitors can impair genioglossus and diaphragm muscle function. Anesthesiology. 2007; 107 (4): 621-629.
Herbstreit F, Zigrahn D, Ochterbeck C, Peters J, Eikermann M. Neostigmine/glycopyrrolate administered after recovery from neuromuscular block increases upper airway collapsibility by decreasing genioglossus muscle activity in response to negative pharyngeal pressure. Anesthesiology. 2010; 113 (6): 1280-1288.
Murphy GS, Szokol JW, Marymont JH, Greenberg SB, Avram MJ, Vender JS. Residual neuromuscular blockade and critical respiratory events in the postanesthesia care unit. Anesthc Analg. 2008; 107 (1): 130-137.
Grosse-Sundrup M, Henneman JP, Sandberg WS, Bateman BT, Uribe JV, Nguyen NT et al. Intermediate acting nondepolarizing neuromuscular blocking agents and risk of postoperative respiratory complications: prospective propensity score matched cohort study. BMJ. 2012; 345: e6329.
Chambers D, Paulden M, Paton F, Heirs M, Duffy S, Hunter JM et al. Sugammadex for reversal of neuromuscular block after rapid sequence intubation: a systematic review and economic assessment. Br J Anaesth. 2010; 105 (5): 568-575.
Ledowski T, Falke L, Johnston F, Gillies E, Greenaway M, De Mel A et al. Retrospective investigation of postoperative outcome after reversal of residual neuromuscular blockade: sugammadex, neostigmine or no reversal. Eur J Anaesthesiol. 2014; 31 (18): 423-429.
Ledowski T, Hillyard S, Kozman A, Johnston F, Gillies E, Greenaway M et al. Unrestricted access to sugammadex: impact on neuromuscular blocking agent choice, reversal practice and associated healthcare costs. Anaesth Intensive Care. 2012; 40 (2): 340-343.
Park JY. Benefits and risks of sugammadex. Korean J Anesthesiol. 2015; 68 (1): 1-2.
Dahl V, Pendeville PE, Hollmann MW, Heier T, Abels EA, Blobner M. Safety and efficacy of sugammadex for the reversal of rocuronium-induced neuromuscular blockade in cardiac patients undergoing noncardiac surgery. Eur J Anaesthesiol. 2009; 26 (10): 874-884.
Hristovska AM, Duch P, Allingstrup M, Afshari A. Efficacy and safety of sugammadex versus neostigmine in reversing neuromuscular blockade in adults. Cochrane Database Syst Rev. 2017; 8: CD012763.
De la Torre-Anderson J, de la Torre-Buendía J, Zamora-García V. Eficacia y seguridad del sugammadex. Rev Mex Anest. 2014; 37 (2): 77-82.
Thilen S, Bhananker SM. Qualitative neuromuscular monitoring: How to optimize the use of a peripheral nerve stimulator to reduce the risk of residual neuromuscular blockade. Curr Anesthesiol Rep. 2016; 6: 164-169.